1
|
Villacorta FJ, Bordallo HN, Conde A, Pereira JEM, Martínez R, Mazkiaran I, Aranda I, Del Moral OG, Zugazaga A, Harper G, Arai M. MIRACLES, the backscattering spectrometer of the European Spallation Source: Meeting scientific requirements with design. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2025; 96:045101. [PMID: 40167399 DOI: 10.1063/5.0241954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
MIRACLES, the neutron time-of-flight backscattering instrument of the European Spallation Source (ESS), will be the spectrometer with the highest energy resolution at the start of the ESS user program. The long pulse provided by the ESS source allows tuning the energy resolution of the instrument, with the concomitant capability of probing a wide range of molecular and atomic timescales, unfolding new opportunities in neutron spectroscopy to disentangle complex dynamics faster in a single experiment and allowing the use of smaller and more diluted samples. This work will report on a detailed description of the design efforts to bring MIRACLES from the scientific requirements to the construction and commissioning phases. This includes the provision of high and tailored energy resolution, optimization of the signal-to-background ratio, and the ability for integration of new equipment and scientific capabilities that will make MIRACLES a paramount asset for the ESS neutron scientific instrument suite.
Collapse
Affiliation(s)
- Félix J Villacorta
- ESS-Bilbao, Parque Científico y Tecnológico Bizkaia Nave 201, 48170 Zamudio, Spain
| | - Heloisa N Bordallo
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Alexander Conde
- ESS-Bilbao, Parque Científico y Tecnológico Bizkaia Nave 201, 48170 Zamudio, Spain
| | - José E M Pereira
- ESS-Bilbao, Parque Científico y Tecnológico Bizkaia Nave 201, 48170 Zamudio, Spain
| | - Roberto Martínez
- ESS-Bilbao, Parque Científico y Tecnológico Bizkaia Nave 201, 48170 Zamudio, Spain
| | - Idoia Mazkiaran
- ESS-Bilbao, Parque Científico y Tecnológico Bizkaia Nave 201, 48170 Zamudio, Spain
| | - Iván Aranda
- ESS-Bilbao, Parque Científico y Tecnológico Bizkaia Nave 201, 48170 Zamudio, Spain
| | - Octavio G Del Moral
- ESS-Bilbao, Parque Científico y Tecnológico Bizkaia Nave 201, 48170 Zamudio, Spain
| | - Aitor Zugazaga
- ESS-Bilbao, Parque Científico y Tecnológico Bizkaia Nave 201, 48170 Zamudio, Spain
| | - Giles Harper
- ESS-Bilbao, Parque Científico y Tecnológico Bizkaia Nave 201, 48170 Zamudio, Spain
| | - Masatoshi Arai
- European Spallation Source ESS ERIC, P.O. Box 176, SE-22100 Lund, Sweden
| |
Collapse
|
2
|
Robertson M, Qian J, Qiang Z. Polymer Sorbent Design for the Direct Air Capture of CO 2. ACS APPLIED POLYMER MATERIALS 2024; 6:14169-14189. [PMID: 39697843 PMCID: PMC11650649 DOI: 10.1021/acsapm.3c03199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/27/2024] [Accepted: 03/15/2024] [Indexed: 12/20/2024]
Abstract
Anthropogenic activities have resulted in enormous increases in atmospheric CO2 concentrations particularly since the onset of the Industrial Revolution, which have potential links with increased global temperatures, rising sea levels, increased prevalence, and severity of natural disasters, among other consequences. To enable a carbon-neutral and sustainable society, various technologies have been developed for CO2 capture from industrial process streams as well as directly from air. Here, direct air capture (DAC) represents an essential need for reducing CO2 concentration in the atmosphere to mitigate the negative consequences of greenhouse effects, involving systems that can reversibly adsorb and release CO2, in which polymers have played an integral role. This work provides insights into the development of polymer sorbents for DAC of CO2, specifically from the perspective of material design principles. We discuss how physical properties and chemical identities of amine-containing polymers can impact their ability to uptake CO2, as well as be efficiently regenerated. Additionally, polymers which use ionic interactions to react with CO2 molecules, such as poly(ionic liquids), are also common DAC sorbent materials. Finally, a perspective is provided on the future research and technology opportunities of developing polymer-derived sorbents for DAC.
Collapse
Affiliation(s)
- Mark Robertson
- School of
Polymer Science and Engineering, The University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jin Qian
- School of
Polymer Science and Engineering, The University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Zhe Qiang
- School of
Polymer Science and Engineering, The University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
3
|
Sarter M, Stewart JR, Nilsen GJ, Devonport M, Nemkovski K. Data Analysis of Dynamics in Protein Solutions Using Quasi-Elastic Neutron Scattering─Important Insights from Polarized Neutrons. J Am Chem Soc 2024; 146. [PMID: 39360952 PMCID: PMC11488478 DOI: 10.1021/jacs.4c06273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024]
Abstract
Protein dynamics play a vital role in biology. Quasi elastic neutron scattering (QENS) is an ideal method to access these dynamics. To isolate protein dynamics, it is important to separate the signal of the buffer and the protein. Normally data analysis is performed based on the assumption that the scattering spectrum is incoherent. To observe the full range of protein dynamics, it is necessary to perform the experiments in solution. This solution is usually a fully deuterated buffer, while the protein remains protonated. It is generally assumed that subtracting the buffer contribution removes all coherent signal from the measured spectrum, and the rest can be considered as purely incoherent. Up until recently, there was no way to experimentally verify this assumption. Polarized QENS experiments allow for the coherent and incoherent contributions to be separated. By comparing the results from the polarized QENS experiment and the standard analysis method from unpolarized QENS, we are thus able to check this assumption experimentally. We show that the pure incoherent spectrum obtained from polarization analysis does not match the results for unpolarized QENS. We discuss the implications of this for data analysis and possible solutions to the problem, as well as mitigation techniques for standard QENS.
Collapse
Affiliation(s)
- Mona Sarter
- STFC Rutherford Appleton
Laboratory, ISIS Neutron and Muon Facility, Chilton, Didcot OX11 0QX, U.K.
| | - J Ross Stewart
- STFC Rutherford Appleton
Laboratory, ISIS Neutron and Muon Facility, Chilton, Didcot OX11 0QX, U.K.
| | - Gøran Jan Nilsen
- STFC Rutherford Appleton
Laboratory, ISIS Neutron and Muon Facility, Chilton, Didcot OX11 0QX, U.K.
| | - Mark Devonport
- STFC Rutherford Appleton
Laboratory, ISIS Neutron and Muon Facility, Chilton, Didcot OX11 0QX, U.K.
| | - Kirill Nemkovski
- STFC Rutherford Appleton
Laboratory, ISIS Neutron and Muon Facility, Chilton, Didcot OX11 0QX, U.K.
| |
Collapse
|
4
|
Salvati Manni L, Wood K, Klapproth A, Warr GG. Inelastic neutron scattering and spectroscopy methods to characterize dynamics in colloidal and soft matter systems. Adv Colloid Interface Sci 2024; 326:103135. [PMID: 38520888 DOI: 10.1016/j.cis.2024.103135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Colloidal systems and soft materials are well suited to neutron scattering, and the community has readily adopted elastic scattering techniques to investigate their structure. Due to their unique properties, neutrons may also be used to characterize the dynamics of soft materials over a wide range of length and time scales in situ. Both static structures and an understanding of how molecules move about their equilibrium positions is essential if we are to deliver on the promise of rationally designing soft materials. In this review we introduce the basics of neutron spectroscopy and explore the ways in which inelastic neutron scattering can be used to study colloidal and soft materials. Illustrative examples are chosen that highlight the phenomena suitable for investigation using this suite of techniques.
Collapse
Affiliation(s)
- Livia Salvati Manni
- School of Chemistry, University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia; School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia; School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia; Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Kathleen Wood
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Alice Klapproth
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Gregory G Warr
- School of Chemistry, University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
Jakobi B, Bichler KJ, Juranyi F, Schneider GJ. Reversed dynamics of bottlebrush polymers with stiff backbone and flexible side chains. J Chem Phys 2024; 160:084901. [PMID: 38385519 DOI: 10.1063/5.0184429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
The segmental dynamics of bottlebrush polymers with a stiff backbone and flexible side chains has been studied. The segmental relaxation time of side chains attached to a flexible backbone follows the same trend as linear polymers, an increase with the increasing molecular weight, but is slowed down compared to their linear counterparts. Theoretical work predicts a reversal of the molecular weight dependence of the relaxation time for stiff backbones. As a model for a stiff-g-flexible system, bottlebrushes with poly(norbornene) backbone and poly(propylene oxide) side chains, PNB-g-PPO, at a uniform grafting density have been synthesized and characterized with quasi-elastic neutron scattering. Indeed, the anticipated reversed dynamics was found. Increasing the side chain length decreases the segmental relaxation time. This indicates the importance of the characteristics of the grafting site beyond a simplified picture of an attached side chain. The mean square displacement shows a similar trend with longer side chains exhibiting a larger displacement.
Collapse
Affiliation(s)
- Bruno Jakobi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Karin J Bichler
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Fanni Juranyi
- Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Gerald J Schneider
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
6
|
Marques MPM, de Carvalho ALMB, Martins CB, Silva JD, Sarter M, García Sakai V, Stewart JR, de Carvalho LAEB. Cellular dynamics as a marker of normal-to-cancer transition in human cells. Sci Rep 2023; 13:21079. [PMID: 38030663 PMCID: PMC10687084 DOI: 10.1038/s41598-023-47649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
Normal-to-cancer (NTC) transition is known to be closely associated to cell´s biomechanical properties which are dependent on the dynamics of the intracellular medium. This study probes different human cancer cells (breast, prostate and lung), concomitantly to their healthy counterparts, aiming at characterising the dynamical profile of water in distinct cellular locations, for each type of cell, and how it changes between normal and cancer states. An increased plasticity of the cytomatrix is observed upon normal-to-malignant transformation, the lung carcinoma cells displaying the highest flexibility followed by prostate and breast cancers. Also, lung cells show a distinct behaviour relative to breast and prostate, with a higher influence from hydration water motions and localised fast rotations upon NTC transformation. Quasielastic neutron scattering techniques allowed to accurately distinguish the different dynamical processes taking place within these highly heterogeneous cellular systems. The results thus obtained suggest that intracellular water dynamics may be regarded as a specific reporter of the cellular conditions-either healthy or malignant.
Collapse
Affiliation(s)
- M P M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - A L M Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal.
| | - C B Martins
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - J D Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - M Sarter
- STFC Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, OX11 0QX, UK
| | - V García Sakai
- STFC Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, OX11 0QX, UK
| | - J R Stewart
- STFC Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, OX11 0QX, UK
| | - L A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| |
Collapse
|
7
|
Mohottalalage SS, Kosgallana C, Senanayake M, Wijesinghe S, Osti NC, Perahia D. Molecular Insight into the Effects of Clustering on the Dynamics of Ionomers in Solutions. ACS Macro Lett 2023; 12:1118-1124. [PMID: 37493602 DOI: 10.1021/acsmacrolett.3c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Ionizable groups tethered to polymers enable their many current and potential applications. However, these functionalities drive the formation of physical networks through clustering of the ionic groups, resulting in constrained dynamics of the macromolecules. Understanding the molecular origin of this hindrance remains a critical fundamental question, whose solution will directly impact the processing of ionizable polymers from molecules to viable materials. Here, using quasielastic neutron scattering accompanied by molecular dynamics simulations, segmental dynamics of slightly sulfonated polystyrene is studied in solutions as the cohesion of the ionic assemblies is tuned. We find that in cyclohexane the ionic assemblies act as centers of confinement, affecting dynamics both on macroscopic lengths and in the vicinity of the ionic assemblies. Addition of a small amount of ethanol affects the packing of the ionizable groups within the assemblies, which in turn enhances the chain dynamics.
Collapse
Affiliation(s)
- Supun S Mohottalalage
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Chathurika Kosgallana
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Manjula Senanayake
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sidath Wijesinghe
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- Department of Chemistry, Appalachian State University, Boone, North Carolina 26808, United States
| | - Naresh C Osti
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Dvora Perahia
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- Department of Physics, Clemson University, Clemson, South Carolina 29631, United States
| |
Collapse
|
8
|
Matsuo T, Cisse A, Plazanet M, Natali F, Koza MM, Ollivier J, Bicout DJ, Peters J. The dynamical Matryoshka model: 3. Diffusive nature of the atomic motions contained in a new dynamical model for deciphering local lipid dynamics. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183949. [PMID: 35508224 DOI: 10.1016/j.bbamem.2022.183949] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022]
Abstract
In accompanying papers [Bicout et al., BioRxiv https://doi.org/10.1101/2021.09.21.461198 (2021); Cissé et al., BioRxiv https://doi.org/10.1101/2022.03.30.486370 (2022)], a new model called Matryoshka model has been proposed to describe the geometry of atomic motions in phospholipid molecules in bilayers and multilamellar vesicles based on their quasielastic neutron scattering (QENS) spectra. Here, in order to characterize the relaxational aspects of this model, the energy widths of the QENS spectra of the samples were analyzed first in a model-free way. The spectra were decomposed into three Lorentzian functions, which are classified as slow, intermediate, and fast motions depending on their widths. The analysis provides the diffusion coefficients, residence times, and geometrical parameters for the three classes of motions. The results corroborate the parameter values such as the amplitudes and the mobile fractions of atomic motions obtained by the application of the Matryoshka model to the same samples. Since the current analysis was carried out independently of the development of the Matryoshka model, the present results enhance the validity of the model. The model will serve as a powerful tool to decipher the dynamics of lipid molecules not only in model systems, but also in more complex systems such as mixtures of different kinds of lipids or natural cell membranes.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Univ. Grenoble Alpes, CNRS, LiPhy, F-38000 Grenoble, France; Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France; Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Aline Cisse
- Univ. Grenoble Alpes, CNRS, LiPhy, F-38000 Grenoble, France; Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Marie Plazanet
- Univ. Grenoble Alpes, CNRS, LiPhy, F-38000 Grenoble, France
| | - Francesca Natali
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France; CNR-IOM, OGG, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Michael Marek Koza
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Jacques Ollivier
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Dominique J Bicout
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France; Univ. Grenoble Alpes, CNRS, Grenoble INP, VetAgro Sup, TIMC, 38000 Grenoble, France
| | - Judith Peters
- Univ. Grenoble Alpes, CNRS, LiPhy, F-38000 Grenoble, France; Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France; Institut Universitaire de France, France.
| |
Collapse
|
9
|
Matsuo T, Peters J. Sub-Nanosecond Dynamics of Pathologically Relevant Bio-Macromolecules Observed by Incoherent Neutron Scattering. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081259. [PMID: 36013438 PMCID: PMC9410404 DOI: 10.3390/life12081259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 01/22/2023]
Abstract
Incoherent neutron scattering (iNS) is one of the most powerful techniques to study the dynamical behavior of bio-macromolecules such as proteins and lipid molecules or whole cells. This technique has widely been used to elucidate the fundamental aspects of molecular motions that manifest in the bio-macromolecules in relation to their intrinsic molecular properties and biological functions. Furthermore, in the last decade, iNS studies focusing on a possible relationship between molecular dynamics and biological malfunctions, i.e., human diseases and disorders, have gained importance. In this review, we summarize recent iNS studies on pathologically relevant proteins and lipids and discuss how the findings are of importance to elucidate the molecular mechanisms of human diseases and disorders that each study targets. Since some diseases such as amyloidosis have become more relevant in the aging society, research in this field will continue to develop further and be more important in the current increasing trend for longevity worldwide.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 2-4 Shirakata, Tokai 319-1106, Ibaraki, Japan
- Dept. of Physics, Univ. Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, CEDEX 9, 38042 Grenoble, France
- Correspondence: (T.M.); (J.P.)
| | - Judith Peters
- Dept. of Physics, Univ. Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, CEDEX 9, 38042 Grenoble, France
- Institut Universitaire de France, 75231 Paris, France
- Correspondence: (T.M.); (J.P.)
| |
Collapse
|
10
|
Sharma VK, Gupta J, Srinivasan H, Bhatt H, García Sakai V, Mitra S. Curcumin Accelerates the Lateral Motion of DPPC Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9649-9659. [PMID: 35878409 DOI: 10.1021/acs.langmuir.2c01250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Curcumin, the main ingredient in turmeric, has attracted attention due to its potential anti-inflammatory, anticancer, wound-healing, and antioxidant properties. Though curcumin efficacy is related to its interaction with biomembranes, there are few reports on the effects of curcumin on the lateral motion of lipids, a fundamental process in the cell membrane. Employing the quasielastic neutron scattering technique, we explore the effects of curcumin on the lateral diffusion of the dipalmotylphosphatidylcholine (DPPC) membrane. Our investigation is also supported by Fourier transform infrared spectroscopy, dynamic light scattering, and calorimetry to understand the interaction between curcumin and the DPPC membrane. It is found that curcumin significantly modulates the packing arrangement and conformations of DPPC lipid, leading to enhanced membrane dynamics. In particular, we find that the presence of curcumin substantially accelerates the DPPC lateral motion in both ordered and fluid phases. The effects are more pronounced in the ordered phase where the lateral diffusion coefficient increases by 23% in comparison to 9% in the fluid phase. Our measurements provide critical insights into molecular mechanisms underlying increased lateral diffusion. In contrast, the localized internal motions of DPPC are barely altered, except for a marginal enhancement observed in the ordered phase. In essence, these findings indicate that curcumin is favorably located at the membrane interface rather than in a transbilayer configuration. Further, the unambiguous evidence that curcumin modulates the membrane dynamics at a molecular level supports a possible action mechanism in which curcumin can act as an allosteric regulator of membrane functionality.
Collapse
Affiliation(s)
- Veerendra Kumar Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Jyoti Gupta
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Harish Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Himal Bhatt
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Victoria García Sakai
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Subhankur Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
11
|
Marques MPM, Santos IP, Batista de Carvalho ALM, Mamede AP, Martins CB, Figueiredo P, Sarter M, Sakai VG, Batista de Carvalho LAE. Water dynamics in human cancer and non-cancer tissues. Phys Chem Chem Phys 2022; 24:15406-15415. [PMID: 35704895 DOI: 10.1039/d2cp00621a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Normal-to-malignant transformation is a poorly understood process associated with cellular biomechanical properties. These are strongly dependent on the dynamical behaviour of water, known to play a fundamental role in normal cellular activity and in the maintenance of the three-dimensional architecture of the tissue and the functional state of biopolymers. In this study, quasi-elastic neutron scattering was used to probe the dynamical behaviour of water in human cancer specimens and their respective surrounding normal tissue from breast and tongue, as an innovative approach for identifying particular features of malignancy. This methodology has been successfully used by the authors in human cells and was the first study of human tissues by neutron scattering techniques. A larger flexibility was observed for breast versus tongue tissues. Additionally, different dynamics were found for malignant and non-malignant specimens, depending on the tissue: higher plasticity for breast invasive cancer versus the normal, and an opposite effect for tongue. The data were interpreted in the light of two different water populations within the samples: one displaying bulk-like dynamics (extracellular and intracellular/cytoplasmic) and another with constrained flexibility (extracellular/interstitial and intracellular/hydration layers).
Collapse
Affiliation(s)
- M P M Marques
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal. .,University of Coimbra, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - I P Santos
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - A L M Batista de Carvalho
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - A P Mamede
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - C B Martins
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - P Figueiredo
- Oncology Institute of Coimbra Francisco Gentil, 3000-075 Coimbra, Portugal
| | - M Sarter
- ISIS Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK
| | - V García Sakai
- ISIS Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK
| | - L A E Batista de Carvalho
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal.
| |
Collapse
|
12
|
Pena-Francesch A, Jung H, Tyagi M, Demirel MC. Diffusive Dynamic Modes of Recombinant Squid Ring Teeth Proteins by Neutron Spectroscopy. Biomacromolecules 2022; 23:3165-3173. [PMID: 35767422 DOI: 10.1021/acs.biomac.2c00266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Stimuli-responsive structural proteins are emerging as promising biocompatible materials for a wide range of biological and nonbiological applications. To understand the physical properties of structural proteins and to replicate their performance in biosynthetic systems, there is a need to understand the molecular mechanisms and relationships that regulate their structure, dynamics, and properties. Here, we study the dynamics of a recombinant squid-inspired protein from Loligo vulgaris (Lv18) by elastic and quasielastic neutron scattering (QENS) to understand the connection between nanostructure, chain dynamics, and mechanical properties. Lv18 is a semicrystalline structural protein, which is plasticized by water above its glass transition temperature at 35 °C. Elastic scans revealed an increased protein chain mobility upon hydration, superimposed dynamic processes, and a decrease in dynamic transition temperatures. Further analysis by QENS revealed that while dry Lv18 protein dynamics are dominated by localized methyl group rotations, hydrated Lv18 dynamics are dominated by the confined diffusion of flexible chains within a β-sheet nanocrystalline network (8 Å of confinement radius). Our findings establish a relationship between the segment block architecture of Lv18, the diffusive motions within the protein structure, and the mechanical properties of recombinant squid proteins, which will advance the molecular design of novel high-performance protein-inspired materials with tailored dynamics and mechanical properties.
Collapse
Affiliation(s)
- Abdon Pena-Francesch
- Department of Materials Science and Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Huihun Jung
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Madhusudan Tyagi
- NIST Center for Neutron Research, Gaithersburg, Maryland 20899, United States.,Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Melik C Demirel
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Materials Research Institute, and Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
13
|
Senses E, Kitchens CL, Faraone A. Viscosity reduction in polymer nanocomposites: Insights from dynamic neutron and X‐ray scattering. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Erkan Senses
- Department of Chemical and Biological Engineering Koc University Istanbul Turkey
| | - Christopher L. Kitchens
- Department of Chemical and Biomolecular Engineering Clemson University Clemson South Carolina USA
| | - Antonio Faraone
- Center for Neutron Research National Institute of Standards and Technology Gaithersburg Maryland USA
| |
Collapse
|
14
|
Jansen M, Juranyi F, Yarema O, Seydel T, Wood V. Ligand Dynamics in Nanocrystal Solids Studied with Quasi-Elastic Neutron Scattering. ACS NANO 2021; 15:20517-20526. [PMID: 34878757 DOI: 10.1021/acsnano.1c09073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanocrystal surfaces are commonly populated by organic ligands, which play a determining role in the optical, electronic, thermal, and catalytic properties of the individual nanocrystals and their assemblies. Understanding the bonding of ligands to nanocrystal surfaces and their dynamics is therefore important for the optimization of nanocrystals for different applications. In this study, we use temperature-dependent, quasi-elastic neutron scattering (QENS) to investigate the dynamics of different surface bound alkanethiols in lead sulfide nanocrystal solids. We select alkanethiols with mono- and dithiol terminations, as well as different backbone types and lengths. QENS spectra are collected both on a time-of-flight spectrometer and on a backscattering spectrometer, allowing us to investigate ligand dynamics in a time range from a few picoseconds to nanoseconds. Through model-based analysis of the QENS data, we find that ligands can either (1) precess around a central axis, while simultaneously rotating around their own molecular axis, or (2) only undergo uniaxial rotation with no precession. We establish the percentage of ligands undergoing each type of motion, the average relaxation times, and activation energies for these motions. We determine, for example, that dithiols which link facets of neighboring nanocrystals only exhibit uniaxial rotation and that longer ligands have higher activation energies and show smaller opening angles of precession due to stronger ligand-ligand interactions. Generally, this work provides insight into the arrangement and dynamics of ligands in nanocrystal solids, which is key to understanding their mechanical and thermal properties, and, more generally, highlights the potential of QENS for studying ligand behavior.
Collapse
Affiliation(s)
- Maximilian Jansen
- Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Fanni Juranyi
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Olesya Yarema
- Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Tilo Seydel
- Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Vanessa Wood
- Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| |
Collapse
|
15
|
Fujii Y, Tominaga T, Murakami D, Tanaka M, Seto H. Local Dynamics of the Hydration Water and Poly(Methyl Methacrylate) Chains in PMMA Networks. Front Chem 2021; 9:728738. [PMID: 34778200 PMCID: PMC8586490 DOI: 10.3389/fchem.2021.728738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/09/2021] [Indexed: 12/02/2022] Open
Abstract
The dynamic behavior of water molecules and polymer chains in a hydrated poly(methyl methacrylate) (PMMA) matrix containing a small amount of water molecules was investigated. Water molecules have been widely recognized as plasticizers for activating the segmental motion of polymer chains owing to their ability to reduce the glass transition temperature. In this study, combined with judicious hydrogen/deuterium labeling, we conducted quasi-elastic neutron scattering (QENS) experiments on PMMA for its dry and hydrated states. Our results clearly indicate that the dynamics of hydrated polymer chains are accelerated, and that individual water molecules are slower than bulk water. It is therefore suggested that the hydration water affects the local motion of PMMA and activates the local relaxation process known as restricted rotation, which is widely accepted to be generally insensitive to changes in the microenvironment.
Collapse
Affiliation(s)
- Yoshihisa Fujii
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Japan
| | - Taiki Tominaga
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tsuchiura, Japan
| | - Daiki Murakami
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Hideki Seto
- Institute of Materials Structure Science/J-PARC Center, High Energy Accelerator Research Organization, Tokai, Japan
| |
Collapse
|
16
|
Sepulveda-Medina PI, Tyagi M, Wang C, Vogt BD. Water dynamics within nanostructured amphiphilic statistical copolymers from quasielastic neutron scattering. J Chem Phys 2021; 154:154903. [PMID: 33887940 DOI: 10.1063/5.0045341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the properties of water under either soft or hard confinement has been an area of great interest, but nanostructured amphiphilic polymers that provide a secondary confinement have garnered significantly less attention. Here, a series of statistical copolymers of 2-hydroxyethyl acrylate (HEA) and 2-(N-ethylperfluorooctane sulfonamido)ethyl methacrylate (FOSM) are swollen to equilibrium in water to form nanostructured physically cross-linked hydrogels to probe the effect of soft confinement on the dynamics of water. Changing the composition of the copolymer from 10 to 21 mol. % FOSM decreases the average size of the assembled FOSM cross-link, but also the spacing between the cross-links in the hydrogels with the mean distance between the FOSM aggregates decreasing from 3.9 to 2.7 nm. The dynamics of water within the hydrogels were assessed with quasielastic neutron scattering. These hydrogels exhibit superior performance for inhibition of water crystallization on supercooling in comparison to analogous hydrogels with different hydrophilic copolymer chemistries. Despite the lower water crystallinity, the self-diffusion coefficient for these hydrogels from the copolymers of HEA and FOSM decreases precipitously below 260 K, which is a counter to the nearly temperature invariant water dynamics reported previously with an analogous hydrogel [Wiener et al., J. Phys. Chem. B 120, 5543 (2016)] that exhibits nearly temperature invariant dynamics to 220 K. These results point to chemistry dependent dynamics of water that is confined within amphiphilic hydrogels, where the interactions of water with the hydrophilic segments can qualitatively alter the temperature dependent dynamics of water in the supercooled state.
Collapse
Affiliation(s)
| | - Madhusudan Tyagi
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Chao Wang
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Bryan D Vogt
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
17
|
Soles CL, Burns AB, Ito K, Chan EP, Douglas JF, Wu J, Yee AF, Shih YT, Huang L, Dimeo RM, Tyagi M. Why Enhanced Subnanosecond Relaxations Are Important for Toughness in Polymer Glasses. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Christopher L. Soles
- NIST Materials Science and Engineering Division, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Adam B. Burns
- NIST Materials Science and Engineering Division, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Kanae Ito
- NIST Materials Science and Engineering Division, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Edwin P. Chan
- NIST Materials Science and Engineering Division, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- NIST Materials Science and Engineering Division, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Jinhuang Wu
- Macromolecular Science and Engineering Program, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Albert F. Yee
- Department of Chemical and Biological Engineering, University of California, Irvine, California 92697, United States
| | - Yueh-Ting Shih
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Liping Huang
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Robert M. Dimeo
- NIST Center for Neutron Research, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Madhusudan Tyagi
- NIST Center for Neutron Research, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
18
|
|
19
|
Blasco D, López-de-Luzuriaga JM, Monge M, Olmos ME, Rodríguez-Castillo M, Amaveda H, Mora M, García Sakai V, Martínez-González JA. Multidisciplinary study on the hydrogelation of the digold( i) complex [{Au( 9N-adeninate)} 2(μ-dmpe)]: optical, rheological, and quasi-elastic neutron scattering perspectives. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00586c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-conventional experimental techniques such as rheology or QENS will aid synthetic inorganic chemists to broaden the knowledge on gold(i) hydrometallogels’ structure and properties and to understand their expected relationship.
Collapse
Affiliation(s)
- Daniel Blasco
- Departamento de Química
- Centro de Investigación en Síntesis Química (CISQ)
- Universidad de La Rioja
- 26004 Logroño
- Spain
| | - José M. López-de-Luzuriaga
- Departamento de Química
- Centro de Investigación en Síntesis Química (CISQ)
- Universidad de La Rioja
- 26004 Logroño
- Spain
| | - Miguel Monge
- Departamento de Química
- Centro de Investigación en Síntesis Química (CISQ)
- Universidad de La Rioja
- 26004 Logroño
- Spain
| | - M. Elena Olmos
- Departamento de Química
- Centro de Investigación en Síntesis Química (CISQ)
- Universidad de La Rioja
- 26004 Logroño
- Spain
| | - María Rodríguez-Castillo
- Departamento de Química
- Centro de Investigación en Síntesis Química (CISQ)
- Universidad de La Rioja
- 26004 Logroño
- Spain
| | - Hippolyte Amaveda
- Instituto de Nanociencia y Materiales de Aragón
- INMA (CSIC-Universidad de Zaragoza)
- 50018 Zaragoza
- Spain
| | - Mario Mora
- Instituto de Nanociencia y Materiales de Aragón
- INMA (CSIC-Universidad de Zaragoza)
- 50018 Zaragoza
- Spain
| | - Victoria García Sakai
- ISIS Neutron and Muon Source
- Rutherford Appleton Laboratory (RAL)
- Harwell Science and Innovation Campus
- Didcot
- UK
| | - José A. Martínez-González
- ISIS Neutron and Muon Source
- Rutherford Appleton Laboratory (RAL)
- Harwell Science and Innovation Campus
- Didcot
- UK
| |
Collapse
|
20
|
Tan P, Huang J, Mamontov E, García Sakai V, Merzel F, Liu Z, Ye Y, Hong L. Decoupling between the translation and rotation of water in the proximity of a protein molecule. Phys Chem Chem Phys 2020; 22:18132-18140. [PMID: 32761039 DOI: 10.1039/d0cp02416c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interaction between water and biomacromolecules is of fundamental interest in biophysics, biochemistry and physical chemistry. By combining neutron scattering and molecular dynamics simulations on a perdeuterated protein at a series of hydration levels, we demonstrated that the translational motion of water is slowed down more significantly than its rotation, when water molecules approach the protein molecule. Further analysis of the simulation trajectories reveals that the observed decoupling results from the fact that the translational motion of water is more correlated over space and more retarded by the charged/polar residues and spatial confinement on the protein surface, than the rotation. Moreover, around the stable protein residues (with smaller atomic fluctuations), water exhibits more decoupled dynamics, indicating a connection between the observed translation-rotation decoupling in hydration water and the local stability of the protein molecule.
Collapse
Affiliation(s)
- Pan Tan
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China. and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan Huang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Eugene Mamontov
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Victoria García Sakai
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK
| | - Franci Merzel
- Theory Department, National Institute of Chemistry, SI 1000 Ljubljana, Slovenia
| | - Zhuo Liu
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China. and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiyang Ye
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Hong
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China. and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Paternò GM, Bondelli G, Sakai VG, Sesti V, Bertarelli C, Lanzani G. The Effect of an Intramembrane Light-Actuator on the Dynamics of Phospholipids in Model Membranes and Intact Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11517-11527. [PMID: 32903010 DOI: 10.1021/acs.langmuir.0c01846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The noncovalent intercalation of amphiphilic molecules in the lipid membrane can be exploited to modulate efficiently the physical status of the membrane. Such effects are largely employed in a range of applications, spanning from drug-delivery to therapeutics. In this context, we have very recently developed an intramembrane photo-actuator consisting of an amphiphilic azobenzene molecule, namely ZIAPIN2. The selective photo-isomerization occurring in the lipid bilayer induces a photo-triggered change in the membrane thickness and capacitance, eventually permitting to evoke light-induced neuronal firing both in vitro and in vivo. Here, we present a study on the dynamical perturbation in the lipid membrane caused by ZIAPIN2 and its vehicle solvent, dimethyl sulfoxide. Effects on the dynamics occurring in the picosecond time range and at the molecular level are probed using quasi-elastic neutron scattering. By coupling experiments carried out both on model membranes and intact cells, we found that DMSO leads to a general retardation of the dynamics within a more dynamically ordered landscape, a result that we attribute to the dehydration at the interface. On the other hand, ZIAPIN2 partitioning produces a general softening of the bilayer owing to its interaction with the lipids. These data are in agreement with our recent studies, which indicate that the efficacy of ZIAPIN2 in triggering cellular signalling stems from its ability to mechanically perturb the bilayer as a whole, by forming light-sensitive membrane spanning dimers.
Collapse
Affiliation(s)
- Giuseppe M Paternò
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 10, 20133 Milano, Italy
| | - Gaia Bondelli
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 10, 20133 Milano, Italy
| | - Victoria Garcia Sakai
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, U.K
| | - Valentina Sesti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica ″Giulio Natta″, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Chiara Bertarelli
- Dipartimento di Chimica, Materiali e Ingegneria Chimica ″Giulio Natta″, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 10, 20133 Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
22
|
Andersson J, Bilotto P, Mears LLE, Fossati S, Ramach U, Köper I, Valtiner M, Knoll W. Solid-supported lipid bilayers - A versatile tool for the structural and functional characterization of membrane proteins. Methods 2020; 180:56-68. [PMID: 32920130 DOI: 10.1016/j.ymeth.2020.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
The cellular membrane is central to the development of single-and multicellular life, as it separates the delicate cellular interior from the hostile environment. It exerts tight control over entry and exit of substances, is responsible for signaling with other cells in multicellular organisms and prevents pathogens from entering the cell. In the case of bacteria and viruses, the cellular membrane also hosts the proteins enabling invasion of the host organism. In a very real sense therefore, the cellular membrane is central to all life. The study of the cell membrane and membrane proteins in particular has therefore attracted significant attention. Due to the enormous variety of tasks performed by the membrane, it is a highly complex and challenging structure to study. Ideally, membrane components would be studied in isolation from this environment, but unlike water soluble proteins, the amphiphilic environment provided by the cellular membrane is key to the structure and function of the cell membrane. Therefore, model membranes have been developed to provide an environment in which a membrane protein can be studied. This review presents a set of tools that enable the comprehensive characterization of membrane proteins: electrochemical tools, surface plasmon resonance, neutron scattering, the surface forces apparatus and atomic force microscopy are discussed, with a particular focus on experimental technique and data evaluation.
Collapse
Affiliation(s)
| | - Pierluigi Bilotto
- Institute of Applied Physics, Vienna University of Technology, Vienna 1040, Austria
| | - Laura L E Mears
- Institute of Applied Physics, Vienna University of Technology, Vienna 1040, Austria
| | - Stefan Fossati
- AIT Austrian Institute of Technology, 1210 Vienna, Austria; Institute of Applied Physics, Vienna University of Technology, Vienna 1040, Austria
| | - Ulrich Ramach
- Institute of Applied Physics, Vienna University of Technology, Vienna 1040, Austria; CEST Kompetenzzentrum für elektrochemische Oberflächentechnologie, Wiener Neustadt 2700, Austria
| | - Ingo Köper
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Markus Valtiner
- Institute of Applied Physics, Vienna University of Technology, Vienna 1040, Austria; CEST Kompetenzzentrum für elektrochemische Oberflächentechnologie, Wiener Neustadt 2700, Austria
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology, 1210 Vienna, Austria; CEST Kompetenzzentrum für elektrochemische Oberflächentechnologie, Wiener Neustadt 2700, Austria
| |
Collapse
|
23
|
Marques MPM, Batista de Carvalho ALM, Mamede AP, Dopplapudi A, García Sakai V, Batista de Carvalho LAE. Role of intracellular water in the normal-to-cancer transition in human cells-insights from quasi-elastic neutron scattering. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:054701. [PMID: 32923512 PMCID: PMC7481011 DOI: 10.1063/4.0000021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The transition from normal to malignant state in human cells is still a poorly understood process. Changes in the dynamical activity of intracellular water between healthy and cancerous human cells were probed as an innovative approach for unveiling particular features of malignancy and identifying specific reporters of cancer. Androgen-unresponsive prostate and triple-negative breast carcinomas were studied as well as osteosarcoma, using the technique of quasi-elastic neutron scattering. The cancerous cells showed a considerably higher plasticity relative to their healthy counterparts, this being more significant for the mammary adenocarcinoma. Also, the data evidence that the prostate cancer cells display the highest plasticity when compared to triple-negative mammary cancer and osteosarcoma, the latter being remarkably less flexible. Furthermore, the results suggest differences between the flexibility of different types of intracellular water molecules in normal and cancerous cells, as well as the number of molecules involved in the different modes of motion. The dynamics of hydration water molecules remain virtually unaffected when going from healthy to cancer cells, while cytoplasmic water (particularly the rotational motions) undergoes significant changes upon normal-to-cancer transition. The results obtained along this study can potentially help to understand the variations in cellular dynamics underlying carcinogenesis and tumor metastasis, with an emphasis on intracellular water.
Collapse
Affiliation(s)
| | - A. L. M. Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - A. P. Mamede
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - A. Dopplapudi
- ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
| | - V. García Sakai
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - L. A. E. Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
24
|
Li R, Liu Z, Li L, Huang J, Yamada T, Sakai VG, Tan P, Hong L. Anomalous sub-diffusion of water in biosystems: From hydrated protein powders to concentrated protein solution to living cells. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:054703. [PMID: 33094127 PMCID: PMC7556885 DOI: 10.1063/4.0000036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Water is essential to life and its translational motion in living systems mediates various biological processes, including transportation of function-required ingredients and facilitating the interaction between biomacromolecules. By combining neutron scattering and isotopic labeling, the present work characterizes translational motion of water on a biomolecular surface, in a range of systems: a hydrated protein powder, a concentrated protein solution, and in living Escherichia coli (E. coli) cells. Anomalous sub-diffusion of water is observed in all samples, which is alleviated upon increasing the water content. Complementary molecular dynamics simulations and coarse-grained numerical modeling demonstrated that the sub-diffusive behavior results from the heterogeneous distribution of microscopic translational mobility of interfacial water. Moreover, by comparing the experimental results measured on E. coli cells with those from a concentrated protein solution with the same amount of water, we show that water in the two samples has a similar average mobility, however the underlying distribution of motion is more heterogeneous in the living cell.
Collapse
Affiliation(s)
| | | | - Like Li
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan Huang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Takeshi Yamada
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Ibaraki 319-1106, Japan
| | - Victoria García Sakai
- ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
| | - Pan Tan
- Authors to whom correspondence should be addressed: and
| | - Liang Hong
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
25
|
The European Spallation Source in a personal view for the German Colloid and Soft Matter Society. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04628-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Marques MPM, Batista de Carvalho ALM, Mamede AP, Rudić S, Dopplapudi A, García Sakai V, Batista de Carvalho LAE. Intracellular water as a mediator of anticancer drug action. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1700083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- M. P. M. Marques
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | - A. P. Mamede
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - S. Rudić
- STFC Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, UK
| | - A. Dopplapudi
- STFC Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, UK
| | - V. García Sakai
- STFC Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, UK
| | | |
Collapse
|
27
|
A New Look into the Mode of Action of Metal-Based Anticancer Drugs. Molecules 2020; 25:molecules25020246. [PMID: 31936161 PMCID: PMC7024343 DOI: 10.3390/molecules25020246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 01/25/2023] Open
Abstract
The mode of action of Pt- and Pd-based anticancer agents (cisplatin and Pd2Spm) was studied by characterising their impact on DNA. Changes in conformation and mobility at the molecular level in hydrated DNA were analysed by quasi-elastic and inelastic neutron scattering techniques (QENS and INS), coupled to Fourier transform infrared (FTIR) and microRaman spectroscopies. Although INS, FTIR and Raman revealed drug-triggered changes in the phosphate groups and the double helix base pairing, QENS allowed access to the nanosecond motions of the biomolecule’s backbone and confined hydration water within the minor groove. Distinct effects were observed for cisplatin and Pd2Spm, the former having a predominant effect on DNA’s spine of hydration, whereas the latter had a higher influence on the backbone dynamics. This is an innovative way of tackling a drug’s mode of action, mediated by the hydration waters within its pharmacological target (DNA).
Collapse
|
28
|
Gambino T, Alegría A, Arbe A, Colmenero J, Malicki N, Dronet S. Modeling the high frequency mechanical relaxation of simplified industrial polymer mixtures using dielectric relaxation results. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Salvador-Castell M, Golub M, Martinez N, Ollivier J, Peters J, Oger P. The first study on the impact of osmolytes in whole cells of high temperature-adapted microorganisms. SOFT MATTER 2019; 15:8381-8391. [PMID: 31613294 DOI: 10.1039/c9sm01196j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The hyperthermophilic piezophile, Thermococcus barophilus displays a strong stress response characterized by the accumulation of the organic osmolyte, mannosylglycerate during growth under sub-optimal pressure conditions (0.1 MPa). Taking advantage of this known effect, the impact of osmolytes in piezophiles in an otherwise identical cellular context was investigated, by comparing T. barophilus cells grown under low or optimal pressures (40 MPa). Using neutron scattering techniques, we studied the molecular dynamics of live cells of T. barophilus at different pressures and temperatures. We show that in the presence of osmolytes, cells present a higher diffusion coefficient of hydration water and an increase of bulk water motions at a high temperature. In the absence of osmolytes, the T. barophilus cellular dynamics is more responsive to high temperature and high hydrostatic pressure. These results therefore give clear evidence for a protecting effect of osmolytes on proteins.
Collapse
|
30
|
Golysheva EA, Dzuba SA. Lipid chain mobility and packing in DOPC bilayers at cryogenic temperatures. Chem Phys Lipids 2019; 226:104817. [PMID: 31525380 DOI: 10.1016/j.chemphyslip.2019.104817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/07/2019] [Accepted: 09/03/2019] [Indexed: 11/30/2022]
Abstract
Low-temperature molecular mobility and packing in biological tissues are important for their survival upon cryopreservation. Electron paramagnetic resonance (EPR) in its pulsed version of electron spin echo (ESE) allows studying stochastic librations of spin-labeled molecules, the type of motion which dominates at low temperatures. These librations are characterized by the parameter <α2>τc where <α2> is the mean squared angular amplitude and τc is the correlation time for the motion. This parameter is known to be larger for higher temperature and for looser intermolecular structure. In this work, ESE data for the bilayers comprised of doubly-unsaturated DOPC (dioleoyl-glycero-phosphocholine) lipids and mono-unsaturated POPC (palmitoyl-oleoyl-glycero-phosphocholine) lipids with spin-labeled stearic acids added were obtained in the temperature range between 80 and 210 K; the results were compared also with the previously obtained data for fully-saturated DPPC (dipalmitoyl-glycero-phosphocholine) lipid bilayers [J. Phys. Chem. B2014, 118, 12,478-12,485; Appl. Magn. Reson. 2018, 49, 1369-1383]. It turned out that for DOPC bilayers the <α2>τc values are of intermediate magnitude between those for POPC and DPPC bilayers, which implies an intermediate density of lipid packing. A possible explanation of this result could be rearrangement at cryogenic temperatures of the DOPC lipid tails, with their terminal segments folding cooperatively. This interpretation is also in agreement with the known thermodynamic properties of gel-fluid transition for DOPC bilayer.
Collapse
Affiliation(s)
- Elena A Golysheva
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation; Department of Physics, Novosibirsk State University, Novosibirsk, 630090, Russian Federation
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation; Department of Physics, Novosibirsk State University, Novosibirsk, 630090, Russian Federation.
| |
Collapse
|
31
|
Cavaye H. Neutron Spectroscopy: An Under-Utilised Tool for Organic Electronics Research? Angew Chem Int Ed Engl 2019; 58:9338-9346. [PMID: 30561867 DOI: 10.1002/anie.201812950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Indexed: 11/08/2022]
Abstract
Neutron scattering is a well-established technique that has proven to be an invaluable tool in myriad fields of chemical and physical research. Neutrons offer unique ways to study in situ or operando functional materials due to their highly penetrating nature and specific interactions with the nuclei of different isotopes. While some neutron scattering techniques, such as neutron diffraction (ND), neutron reflectometry (NR), and small-angle neutron scattering (SANS), have already been heavily adopted by the scientific community for use in the research of organic electronics, there are a number of techniques that are far less widely used: spectroscopic neutron scattering. This article aims to highlight these "under-utilised" techniques, to emphasise their potential use within the field of organic electronics, and to increase awareness of their utility among new research communities.
Collapse
Affiliation(s)
- Hamish Cavaye
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Didcot, OX11 0QX, UK
| |
Collapse
|
32
|
Cavaye H. Neutron Spectroscopy: An Under‐Utilised Tool for Organic Electronics Research? Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hamish Cavaye
- ISIS Neutron and Muon SourceRutherford Appleton LaboratoryScience and Technology Facilities Council Didcot OX11 0QX UK
| |
Collapse
|
33
|
Abstract
AbstractThe dynamics of proteins in solution includes a variety of processes, such as backbone and side-chain fluctuations, interdomain motions, as well as global rotational and translational (i.e. center of mass) diffusion. Since protein dynamics is related to protein function and essential transport processes, a detailed mechanistic understanding and monitoring of protein dynamics in solution is highly desirable. The hierarchical character of protein dynamics requires experimental tools addressing a broad range of time- and length scales. We discuss how different techniques contribute to a comprehensive picture of protein dynamics, and focus in particular on results from neutron spectroscopy. We outline the underlying principles and review available instrumentation as well as related analysis frameworks.
Collapse
|
34
|
Robles-Hernández B, González-Burgos M, Pomposo JA, Colmenero J, Alegría Á. Glass-Transition Dynamics of Mixtures of Linear Poly(vinyl methyl ether) with Single-Chain Polymer Nanoparticles: Evidence of a New Type of Nanocomposite Materials. Polymers (Basel) 2019; 11:E533. [PMID: 30960517 PMCID: PMC6473516 DOI: 10.3390/polym11030533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 01/21/2023] Open
Abstract
Single-chain polymer nanoparticles (SCNPs) obtained through chain collapse by intramolecular cross-linking are attracting increasing interest as components of all-polymer nanocomposites, among other applications. We present a dielectric relaxation study on the dynamics of mixtures of poly(vinyl methyl ether) (PVME) and polystyrene (PS)-based SCNPs with various compositions. Analogous dielectric measurements on a miscible blend of PVME with the linear precursor chains of the SCNPs are taken as reference for this study. Both systems present completely different behaviors: While the blend with the linear precursor presents dynamics very similar to that reported for PVME/PS miscible blends, in the PVME/SCNP mixtures there are an appreciable amount of PVME segments that are barely affected by the presence of SCNPs, which nearly vanishes only for mixtures with high SCNP content. Interestingly, in the frame of a simple two-phase system, our findings point towards the existence of a SCNP-rich phase with a constant PVME fraction, regardless of the overall concentration of the mixture. Moreover, the dynamics of the PVME segments in this SCNP-rich phase display an extreme dynamic heterogeneity, a signature of constraint effects.
Collapse
Affiliation(s)
- Beatriz Robles-Hernández
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain.
- Donostia International Physics Center (DIPC), Paseo Manuel Lardizábal 4, 20018 San Sebastián, Spain.
| | - Marina González-Burgos
- Materials Physics Center, CSIC-UPV/EHU, Paseo Manuel Lardizábal 5, 20018 San Sebastián, Spain.
| | - José A Pomposo
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain.
- Materials Physics Center, CSIC-UPV/EHU, Paseo Manuel Lardizábal 5, 20018 San Sebastián, Spain.
- IKERBASQUE-Basque Foundation for Science, María Díaz de Haro 3, E-48013 Bilbao, Spain.
| | - Juan Colmenero
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain.
- Donostia International Physics Center (DIPC), Paseo Manuel Lardizábal 4, 20018 San Sebastián, Spain.
- Materials Physics Center, CSIC-UPV/EHU, Paseo Manuel Lardizábal 5, 20018 San Sebastián, Spain.
| | - Ángel Alegría
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain.
- Materials Physics Center, CSIC-UPV/EHU, Paseo Manuel Lardizábal 5, 20018 San Sebastián, Spain.
| |
Collapse
|
35
|
Osti NC, Mamontov E, Daemen L, Browning JF, Keum J, Ho HC, Chen J, Hong K, Diallo SO. Side chain dynamics in semiconducting polymer MEH‐PPV. J Appl Polym Sci 2018. [DOI: 10.1002/app.47394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Naresh C. Osti
- Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831
| | - Eugene Mamontov
- Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831
| | - Luke Daemen
- Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831
| | - James F. Browning
- Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831
| | - Jong Keum
- Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831
| | - Hoi Chun Ho
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge Tennessee 37831
- The Bredesen Center for Interdisciplinary Research and Graduate Education The University of Tennessee Knoxville Tennessee 37996
| | - Jihua Chen
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge Tennessee 37831
| | - Kunlun Hong
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge Tennessee 37831
| | - Souleymane O. Diallo
- Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831
| |
Collapse
|
36
|
Tomko JA, Pena-Francesch A, Jung H, Tyagi M, Allen BD, Demirel MC, Hopkins PE. Tunable thermal transport and reversible thermal conductivity switching in topologically networked bio-inspired materials. NATURE NANOTECHNOLOGY 2018; 13:959-964. [PMID: 30104620 DOI: 10.1038/s41565-018-0227-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 07/10/2018] [Indexed: 05/23/2023]
Abstract
The dynamic control of thermal transport properties in solids must contend with the fact that phonons are inherently broadband. Thus, efforts to create reversible thermal conductivity switches have resulted in only modest on/off ratios, since only a relatively narrow portion of the phononic spectrum is impacted. Here, we report on the ability to modulate the thermal conductivity of topologically networked materials by nearly a factor of four following hydration, through manipulation of the displacement amplitude of atomic vibrations. By varying the network topology, or crosslinked structure, of squid ring teeth-based bio-polymers through tandem-repetition of DNA sequences, we show that this thermal switching ratio can be directly programmed. This on/off ratio in thermal conductivity switching is over a factor of three larger than the current state-of-the-art thermal switch, offering the possibility of engineering thermally conductive biological materials with dynamic responsivity to heat.
Collapse
Affiliation(s)
- John A Tomko
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, USA
| | - Abdon Pena-Francesch
- Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute, Pennsylvania State University, University Park , PA, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, State College, PA, USA
| | - Huihun Jung
- Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute, Pennsylvania State University, University Park , PA, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, State College, PA, USA
| | - Madhusudan Tyagi
- NIST Center for Neutron Research, Gaithersburg, MD, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Benjamin D Allen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Melik C Demirel
- Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute, Pennsylvania State University, University Park , PA, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, State College, PA, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Patrick E Hopkins
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Physics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
37
|
Combining scattering and computer simulation for the study of biomolecular soft interfaces. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Gambino T, Alegría A, Arbe A, Colmenero J, Malicki N, Dronet S, Schnell B, Lohstroh W, Nemkovski K. Applying Polymer Blend Dynamics Concepts to a Simplified Industrial System. A Combined Effort by Dielectric Spectroscopy and Neutron Scattering. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas Gambino
- Centro
de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Manufacture Française
des Pneumatiques MICHELIN, Site de Ladoux, 23 place des Carmes Déchaux, Cedex 9 F-63040, Clermont-Ferrand, France
| | - Angel Alegría
- Centro
de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Departamento de Física de Materiales, UPV/EHU, Apartado 1072, E-20080 San Sebastián, Spain
| | - Arantxa Arbe
- Centro
de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Juan Colmenero
- Centro
de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Departamento de Física de Materiales, UPV/EHU, Apartado 1072, E-20080 San Sebastián, Spain
- Donostia International
Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| | - Nicolas Malicki
- Manufacture Française
des Pneumatiques MICHELIN, Site de Ladoux, 23 place des Carmes Déchaux, Cedex 9 F-63040, Clermont-Ferrand, France
| | - Séverin Dronet
- Manufacture Française
des Pneumatiques MICHELIN, Site de Ladoux, 23 place des Carmes Déchaux, Cedex 9 F-63040, Clermont-Ferrand, France
| | - Benoît Schnell
- Manufacture Française
des Pneumatiques MICHELIN, Site de Ladoux, 23 place des Carmes Déchaux, Cedex 9 F-63040, Clermont-Ferrand, France
| | - Wiebke Lohstroh
- Heinz Maier-Leibnitz Zentrum, Technische Universität München, Lichtenbergstraße 1, D-85748 Garching, Germany
| | - Kirill Nemkovski
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| |
Collapse
|
39
|
Shudo Y, Izumi A, Hagita K, Yamada T, Shibata K, Shibayama M. Diffusion Behavior of Methanol Molecules Confined in Cross-Linked Phenolic Resins Studied Using Neutron Scattering and Molecular Dynamics Simulations. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yasuyuki Shudo
- Neutron Science Laboratory, Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
- Corporate Engineering Center, Sumitomo Bakelite Co., Ltd., 2100, Takayanagi, Fujieda, Shizuoka 426-0041, Japan
| | - Atsushi Izumi
- Corporate Engineering Center, Sumitomo Bakelite Co., Ltd., 2100, Takayanagi, Fujieda, Shizuoka 426-0041, Japan
| | - Katsumi Hagita
- Department of Applied Physics, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
| | - Takeshi Yamada
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Kaoru Shibata
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Naka, Ibaraki 319-1195, Japan
| | - Mitsuhiro Shibayama
- Neutron Science Laboratory, Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
40
|
Vural D, Smith JC, Glyde HR. Determination of Dynamical Heterogeneity from Dynamic Neutron Scattering of Proteins. Biophys J 2018; 114:2397-2407. [PMID: 29580551 DOI: 10.1016/j.bpj.2018.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/26/2018] [Accepted: 02/12/2018] [Indexed: 02/04/2023] Open
Abstract
Motional displacements of hydrogen (H) in proteins can be measured using incoherent neutron-scattering methods. These displacements can also be calculated numerically using data from molecular dynamics simulations. An enormous amount of data on the average mean-square motional displacement (MSD) of H as a function of protein temperature, hydration, and other conditions has been collected. H resides in a wide spectrum of sites in a protein. Some H are tightly bound to molecular chains, and the H motion is dictated by that of the chain. Other H are quite independent. As a result, there is a distribution of motions and MSDs of H within a protein that is denoted dynamical heterogeneity. The goal of this paper is to incorporate a distribution of MSDs into models of the H incoherent intermediate scattering function, I(Q,t), that is calculated and observed. The aim is to contribute information on the distribution as well as on the average MSD from comparison of the models with simulations and experiment. For example, we find that simulations of I(Q,t) in lysozyme are well reproduced if the distribution of MSDs is bimodal with two broad peaks rather than a single broad peak.
Collapse
Affiliation(s)
- Derya Vural
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware; Department of Physics, Giresun University, Giresun, Turkey.
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Henry R Glyde
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware
| |
Collapse
|
41
|
Fibre diffraction studies of biological macromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 127:43-87. [DOI: 10.1016/j.pbiomolbio.2017.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/21/2017] [Accepted: 04/05/2017] [Indexed: 12/27/2022]
|
42
|
Dynamic processes in biological membrane mimics revealed by quasielastic neutron scattering. Chem Phys Lipids 2017; 206:28-42. [DOI: 10.1016/j.chemphyslip.2017.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/15/2022]
|
43
|
Li J, Koshnick C, Diallo SO, Ackling S, Huang DM, Jacobs IE, Harrelson TF, Hong K, Zhang G, Beckett J, Mascal M, Moulé AJ. Quantitative Measurements of the Temperature-Dependent Microscopic and Macroscopic Dynamics of a Molecular Dopant in a Conjugated Polymer. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00672] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | - Sophia Ackling
- Department
of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - David M. Huang
- Department
of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
|
46
|
Kyriakos K, Philipp M, Silvi L, Lohstroh W, Petry W, Müller-Buschbaum P, Papadakis CM. Solvent Dynamics in Solutions of PNIPAM in Water/Methanol Mixtures—A Quasi-Elastic Neutron Scattering Study. J Phys Chem B 2016; 120:4679-88. [DOI: 10.1021/acs.jpcb.6b01200] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Konstantinos Kyriakos
- Fachgebiet
weicher Materie/Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Strasse 1, 85748 Garching, Germany
| | - Martine Philipp
- Fachgebiet
weicher Materie/Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Strasse 1, 85748 Garching, Germany
| | - Luca Silvi
- Heinz
Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Wiebke Lohstroh
- Heinz
Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Winfried Petry
- Fachgebiet
weicher Materie/Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Strasse 1, 85748 Garching, Germany
- Heinz
Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Peter Müller-Buschbaum
- Fachgebiet
weicher Materie/Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Strasse 1, 85748 Garching, Germany
| | - Christine M. Papadakis
- Fachgebiet
weicher Materie/Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Strasse 1, 85748 Garching, Germany
| |
Collapse
|
47
|
Burankova T, Hempelmann R, Fossog V, Ollivier J, Seydel T, Embs JP. Proton Diffusivity in the Protic Ionic Liquid Triethylammonium Triflate Probed by Quasielastic Neutron Scattering. J Phys Chem B 2015. [DOI: 10.1021/acs.jpcb.5b04000] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tatsiana Burankova
- Department
of Physical Chemistry, Saarland University, Saarbrücken, 66123, Germany
- Laboratory
for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen
PSI, Villigen 5232, Switzerland
| | - Rolf Hempelmann
- Department
of Physical Chemistry, Saarland University, Saarbrücken, 66123, Germany
| | - Verlaine Fossog
- Department
of Physical Chemistry, Saarland University, Saarbrücken, 66123, Germany
| | | | - Tilo Seydel
- Institut Laue-Langevin, Grenoble, 38000, France
| | - Jan P. Embs
- Laboratory
for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen
PSI, Villigen 5232, Switzerland
| |
Collapse
|
48
|
Androulaki K, Chrissopoulou K, Prevosto D, Labardi M, Anastasiadis SH. Dynamics of Hyperbranched Polymers under Confinement: A Dielectric Relaxation Study. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12387-12398. [PMID: 25603491 DOI: 10.1021/am507571y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The effect of severe confinement on the dynamics of three different generations of hyperbranched polyesters of the Boltorn family is investigated by dielectric relaxation spectroscopy (DRS). The polymer chains are intercalated within the galleries of natural montmorillonite (Na+-MMT), thus forming 1 nm polymer films confined between solid walls. The structure of the nanocomposites is studied with X-ray diffraction and the thermal behavior of the polymers in bulk and under confinement is determined by differential scanning calorimetry. The glass transition temperatures of the polymers show a clear dependence on the generation whereas the transition is completely suppressed when all the polymer chains are intercalated. The dynamic investigation of the bulk polymers reveals two sub-Tg processes, with similar behavior for the three polymers with the segmental relaxation observed above the Tg of each polymer. For the nanocomposites, where all the polymer chains are severely confined, the dynamics show significant differences compared to that of the bulk polymers. The sub-Tg processes are similar for the three generations but significantly faster and with weaker temperature dependence than those in the bulk. The segmental process appears at temperatures below the bulk polymer Tg, it exhibits an Arrhenius temperature dependence and shows differences for the three generations. A slow process that appears at higher temperatures is due to interfacial polarization.
Collapse
Affiliation(s)
- Krystalenia Androulaki
- †Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 711 10 Heraklion Crete, Greece
- ‡Department of Chemistry, University of Crete, 710 03 Heraklion Crete, Greece
| | - Kiriaki Chrissopoulou
- †Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 711 10 Heraklion Crete, Greece
| | - Daniele Prevosto
- §CNR-IPCF, Department of Physics, University of Pisa, Pisa, Italy
| | | | - Spiros H Anastasiadis
- †Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 711 10 Heraklion Crete, Greece
- ‡Department of Chemistry, University of Crete, 710 03 Heraklion Crete, Greece
| |
Collapse
|
49
|
Chrissopoulou K, Anastasiadis SH. Effects of nanoscopic-confinement on polymer dynamics. SOFT MATTER 2015; 11:3746-3766. [PMID: 25869864 DOI: 10.1039/c5sm00554j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The static and dynamic behavior of polymers in confinement close to interfaces can be very different from that in the bulk. Among the various geometries, intercalated nanocomposites, in which polymer films of ∼1 nm thickness reside between the parallel inorganic surfaces of layered silicates in a well-ordered multilayer, offer a unique avenue for the investigation of the effects of nanoconfinement on polymer structure and dynamics by utilizing conventional analytical techniques and macroscopic specimens. In this article, we provide a review of research activities mainly in our laboratory on polymer dynamics under severe confinement utilizing different polymer systems: polar and non-polar polymers were mixed with hydrophilic or organophilic silicates, respectively, whereas hyperbranched polymers were studied in an attempt to probe the effect of polymer-surface interactions by altering the number and the kinds of functional groups in the periphery of the branched polymers. The polymer dynamics was probed by quasielastic neutron scattering and dielectric relaxation spectroscopy and was compared with that of the polymers in the bulk. In all cases, very local sub-Tg processes related to the motion of side and/or end groups as well as the segmental α-relaxation were identified with distinct differences recorded between the bulk and the confined systems. Confinement was found not to affect the very local motion in the case of the linear chains whereas it made it easier for hyperbranched polymers due to modifications of the hydrogen bond network. The segmental relaxation in confinement becomes faster than that in the bulk, exhibits Arrhenius temperature dependence and is observed even below the bulk Tg due to reduced cooperativity in the confined systems.
Collapse
Affiliation(s)
- Kiriaki Chrissopoulou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, P. O. Box 1527, 711 10 Heraklion Crete, Greece.
| | | |
Collapse
|
50
|
Vural D, Hong L, Smith JC, Glyde HR. Motional displacements in proteins: The origin of wave-vector-dependent values. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052705. [PMID: 26066197 DOI: 10.1103/physreve.91.052705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 06/04/2023]
Abstract
The average mean-square displacement, 〈r(2)〉, of H atoms in a protein is frequently determined using incoherent neutron-scattering experiments. 〈r(2)〉 is obtained from the observed elastic incoherent dynamic structure factor, S(i)(Q,ω=0), assuming the form S(i)(Q,ω=0) =exp(-Q(2)〈r(2)〉/3). This is often referred to as the Gaussian approximation (GA) to S(i)(Q,ω=0). 〈r(2)〉 obtained in this way depends on the value of the wave vector, Q considered. Equivalently, the observed S(i)(Q,ω=0) deviates from the GA. We investigate the origin of the Q dependence of 〈r(2)〉 by evaluating the scattering functions in different approximations using molecular dynamics (MD) simulation of the protein lysozyme. We find that keeping only the Gaussian term in a cumulant expansion of S(Q,ω) is an accurate approximation and is not the origin of the Q dependence of 〈r(2)〉. This is demonstrated by showing that the term beyond the Gaussian is negligible and that the GA is valid for an individual atom in the protein. Rather, the Q dependence (deviation from the GA) arises from the dynamical heterogeneity of the H in the protein. Specifically it arises from representing, in the analysis of data, this diverse dynamics by a single average scattering center that has a single, average 〈r(2)〉. The observed Q dependence of 〈r(2)〉 can be used to provide information on the dynamical heterogeneity in proteins.
Collapse
Affiliation(s)
- Derya Vural
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716-2570, USA
| | - Liang Hong
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, P. O. Box 2008, Tennessee 37831, USA
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, P. O. Box 2008, Tennessee 37831, USA
| | - Henry R Glyde
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716-2570, USA
| |
Collapse
|