1
|
Schlattmann D, Weber B, Wyszynski L, Schönhoff M, Haas H. Molecular localization and exchange kinetics in pharmaceutical liposome and mRNA lipoplex nanoparticle products determined by small angle X-ray scattering and pulsed field gradient NMR diffusion measurements. Eur J Pharm Biopharm 2024; 201:114380. [PMID: 38960290 DOI: 10.1016/j.ejpb.2024.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
We have used pulsed field gradient (PFG)-NMR diffusion experiments, also known as DOSY, in combination with small angle X-ray scattering measurements to investigate structure and molecular exchange dynamics between pharmaceutical lipid nanoparticles and the bulk phase. Using liposomes and lipoplexes formed after complexation of the liposomes with messenger mRNA as test systems, information on dynamics of encapsulated water molecules, lipids and excipients was obtained. The encapsulated fraction, having a diffusivity similar to that of the liposomes, could be clearly identified and quantified by the NMR diffusion measurements. The unilamellar liposome membranes allowed a fast exchange of water molecules, while sucrose, used as an osmolyte and model solute, showed very slow exchange. Upon interactions with mRNA a topological transition from a vesicular to a lamellar organization took place, where the mRNA was inserted in repeating lipid bilayer stacks. In the lipoplexes, a small fraction of tightly bound water molecules was present, with a diffusivity that was influenced by the additional presence of sucrose. This extended information on dynamic coherencies inside pharmaceutical nanoparticle products, provided by the combined application of SAXS and PFG-NMR diffusion measurements, can be valuable for evaluation of quality and comparability of nanoscaled pharmaceuticals.
Collapse
Affiliation(s)
- Daniel Schlattmann
- Institute of Physical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | | | - Leonard Wyszynski
- Institute of Physical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Monika Schönhoff
- Institute of Physical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany.
| | - Heinrich Haas
- BioNTech SE. Mainz, Germany; Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
2
|
Cannalire R, Santoro F, Russo C, Graziani G, Tron GC, Carotenuto A, Brancaccio D, Giustiniano M. Photomicellar Catalyzed Synthesis of Amides from Isocyanides: Optimization, Scope, and NMR Studies of Photocatalyst/Surfactant Interactions. ACS ORGANIC & INORGANIC AU 2021; 2:66-74. [PMID: 36855402 PMCID: PMC9954382 DOI: 10.1021/acsorginorgau.1c00028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The merging of micellar and photoredox catalysis represents a key issue to promote "in water" photochemical transformations. A photomicellar catalyzed synthesis of amides from N-methyl-N-alkyl aromatic amines and both aliphatic and aromatic isocyanides is herein presented. The mild reaction conditions enabled a wide substrate scope and a good functional groups tolerance, as further shown in the late-stage functionalization of complex bioactive scaffolds. Furthermore, solution 1D and 2D NMR experiments performed, for the first time, in the presence of paramagnetic probes enabled the study of the reaction environment at the atomic level along with the localization of the photocatalyst with respect to the micelles, thus providing experimental data to drive the identification of optimum photocatalyst/surfactant pairing.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department
of Pharmacy, University of Naples Federico
II, via D. Montesano
49, 80131 Napoli, Italy
| | - Federica Santoro
- Department
of Pharmacy, University of Naples Federico
II, via D. Montesano
49, 80131 Napoli, Italy
| | - Camilla Russo
- Department
of Pharmacy, University of Naples Federico
II, via D. Montesano
49, 80131 Napoli, Italy
| | - Giulia Graziani
- Department
of Pharmacy, University of Naples Federico
II, via D. Montesano
49, 80131 Napoli, Italy
| | - Gian Cesare Tron
- Department
of Drug Science, University of Piemonte
Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Alfonso Carotenuto
- Department
of Pharmacy, University of Naples Federico
II, via D. Montesano
49, 80131 Napoli, Italy,
| | - Diego Brancaccio
- Department
of Pharmacy, University of Naples Federico
II, via D. Montesano
49, 80131 Napoli, Italy,
| | - Mariateresa Giustiniano
- Department
of Pharmacy, University of Naples Federico
II, via D. Montesano
49, 80131 Napoli, Italy,
| |
Collapse
|
3
|
Shen T, Zhou S, Ruan J, Chen X, Liu X, Ge X, Qian C. Recent advances on micellar catalysis in water. Adv Colloid Interface Sci 2021; 287:102299. [PMID: 33321331 DOI: 10.1016/j.cis.2020.102299] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 01/29/2023]
Abstract
Water is the universal solvent in nature to catalyze the biological transformation processes. However, owing to the immiscibility of many reagents in water, synthesis chemistry relies heavily on organic solvent. Micellar media is a green alternative to traditional petroleum feedstock derived solvents, which is recently attracting increasing research attention. The present review deals with the recent advances in micellar catalysis with an emphasis on the new "tailor-made" surfactants for various reactions. A brief overview of commercial surfactants, including anionic micelles, cationic micelles, and nonionic micelles is presented. More importantly, an attempt was made to discuss systematically the recent research progress on new surfactants by introducing structures, micellar effects and recycling process, aiming to serve as the basis for future development of surfactants.
Collapse
|
4
|
Klebes J, Finnigan S, Bray DJ, Anderson RL, Swope WC, Johnston MA, Conchuir BO. The Role of Chemical Heterogeneity in Surfactant Adsorption at Solid-Liquid Interfaces. J Chem Theory Comput 2020; 16:7135-7147. [PMID: 33081471 DOI: 10.1021/acs.jctc.0c00759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical heterogeneity of solid surfaces disrupts the adsorption of surfactants from the bulk liquid. While its presence can hinder the performance of some formulations, bespoke chemical patterning could potentially facilitate controlled adsorption for nanolithography applications. Although some computational studies have investigated the impact of regularly patterned surfaces on surfactant adsorption, in reality, many interesting surfaces are expected to be stochastically disordered and this is an area unexplored via simulations. In this paper, we describe a new algorithm for the generation of randomly disordered chemically heterogeneous surfaces and use it to explore the adsorption behavior of four model nonionic surfactants. Using novel analysis methods, we interrogate both the global surface coverage (adsorption isotherm) and behavior in localized regions. We observe that trends in adsorption characteristics as surfactant size, head/tail ratio, and surface topology are varied and connect these to underlying physical mechanisms. We believe that our methods and approach will prove useful to researchers seeking to tailor surface patterns to calibrate nonionic surfactant adsorption.
Collapse
Affiliation(s)
- Jason Klebes
- IBM Research Europe, The Hartree Centre, Daresbury, Warrington WA4 4AD, United Kingdom.,School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sophie Finnigan
- IBM Research Europe, The Hartree Centre, Daresbury, Warrington WA4 4AD, United Kingdom.,Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, Wood Lane, London W12 0BZ, United Kingdom
| | - David J Bray
- The Hartree Centre, STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
| | - Richard L Anderson
- The Hartree Centre, STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
| | - William C Swope
- IBM Almaden Research Center, San Jose, California 95120, United States
| | | | - Breanndan O Conchuir
- IBM Research Europe, The Hartree Centre, Daresbury, Warrington WA4 4AD, United Kingdom
| |
Collapse
|
5
|
Liu X, Yu Q, Song A, Dong S, Hao J. Progress in nuclear magnetic resonance studies of surfactant systems. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Adamska K, Voelkel A, Sandomierski M. Characterization of mesoporous aluminosilicate materials by means of inverse liquid chromatography. J Chromatogr A 2020; 1610:460544. [DOI: 10.1016/j.chroma.2019.460544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 12/21/2022]
|
7
|
Microstructure evolution during nano-emulsification by NMR and microscopy. J Colloid Interface Sci 2019; 551:138-146. [PMID: 31075628 DOI: 10.1016/j.jcis.2019.04.098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 11/22/2022]
Abstract
HYPOTHESIS Microstructure evolution in emulsions as a function of composition is of great interest but fundamentals have not yet been fully elucidated. Here, pulsed-field gradient (PFG) NMR diffusion measurements have been combined with confocal laser scanning microscopy (CLSM) to assess evolution of dynamics and microstructure during nano-emulsification. EXPERIMENTS Diffusion coefficients of emulsions made of water, mineral oil and surfactants (Span 20 and Tween 80) were measured as a function of water composition and compared with the morphological features of the emulsions obtained by CLSM. FINDINGS In the absence of water, two phases are visible from CLSM, and two diffusion components are observed with PFG NMR, a major fast component attributed to a continuous oil phase containing the more hydrophobic surfactant Span 20 with traces of Tween 80, and a minor slow component attributed to a dispersed phase of the more hydrophilic surfactant Tween 80 with traces of mineral oil and Span 20. At the inversion point (25 wt% water) the two-component diffusion behavior of the oil-rich phase is drastically reversed in terms of populations, with the slow diffusion process becoming dominant. This suggests a significant structuring of the oil-rich phase in the presence of surfactants enhanced by water, which can be explained by the formation of aggregates in the oil phase as reverse micelles or of a lamellar structure, and ties in well with the rheological measurements.
Collapse
|
8
|
Kékicheff P. The long-range attraction between hydrophobic macroscopic surfaces. Adv Colloid Interface Sci 2019; 270:191-215. [PMID: 31277036 DOI: 10.1016/j.cis.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Abstract
Direct measurements of the long-range strongly attractive force observed between macroscopic hydrophobic surfaces across aqueous solutions are reexamined in light of recent experiments and theoretical developments. The focus is on systems in the absence of submicroscopic bubbles (preexistent or induced) to avoid capillary bridging forces. Other possible interferences to the measurements are also eliminated. The force-distance profiles are obtained directly (no contributions from electrical double layer or hydrodynamics) between symmetric identical hydrophobic surfaces, overall charge-neutral, at the thermodynamic equilibrium and in a quenched state. Therefore in the well-defined geometry of crossed-cylinders, sphere-flat, or sphere-sphere, there is no additional interaction to be considered except the ever-present dispersion forces, negligible at large separations. For the three main categories of substrates rendered hydrophobic, namely surfaces obtained with surfactant monolayers physically adsorbed from solution to deposited ones, and substrates coated with a hydrophobizing agent bonded chemically onto the surface, the interaction energy scales as A exp (-2κD)/2κD at large separations, with measured decay lengths in accord with theoretical predictions, simply being half the Debye screening length, κ-1/2, at least in non vanishing electrolyte. Taken together with the prefactor A scaling as the ionic strength, the interaction energy is demonstrated to have an electrostatic origin in all the systems. Thanks to our recent SFAX coupling force measurements with x-ray solution scattering under controlled nano-confinement, the microstructuration of the adsorbed film emerges as an essential feature in the molecular mechanism for explaining the observed attraction of larger magnitude than dispersion forces. The adsorption of pairs of positive and negative ions on small islands along the interface, the fluctuation of the surface charge density around a zero mean-value with desorption into or adsorption from the electrolyte solution, the correlations in the local surface ion concentrations along the surfaces, the redistribution of counterions upon intersurface variation, all contribute and are tuned finely by the inhomogeneities and defects present in the hydrophobic layers. It appears that the magnitude of the interacting energy can be described by a single master curve encompassing all the systems.
Collapse
|
9
|
|
10
|
Kékicheff P, Contal C. Cationic-Surfactant-Coated Mica Surfaces below the Critical Micellar Concentration: 1. Patchy Structures As Revealed by Peak Force Tapping AFM Mode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3087-3107. [PMID: 30691263 DOI: 10.1021/acs.langmuir.8b03781] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The morphology and structure of the self-assembled surfactant aggregates at the solid-liquid interface remain controversial. For the well-studied system of cationic cetyltrimethylammonium bromide (C16TAB) adsorbed onto the opposite negatively charged, atomically smooth mica surface, a variety of surface aggregates have been previously reported: AFM imaging pointing to cylinders and surface micelles as opposed to mono/bilayer-like structures revealed by neutron and X-ray reflectometry, NMR, spectroscopic techniques, and numerical simulations. To reconcile with the latter results, we revisit the morphometry of the C16TAB-coated mica surfaces using the recent peak force tapping (PFT-AFM) mode that allows fragile structures to be imaged with the lowest possible applied force. The evolution of the structural organization at the mica-water interface is investigated above the Krafft boundary over a wide concentration range (from 1/1000 to 2 cmc) after long equilibration times to ensure thermodynamic equilibrium. A complex but fairly complete picture has emerged: At very low concentrations, the C16TAB surfactants adsorb as isolated molecules before forming small clusters. Above 1/140 cmc, monolayer-like stripes are formed. As the concentration is increased, a connected network of these patches progressively covers the mica substrate. Above 1/80 cmc, bilayer-like patches build on top of the underlying monolayer, and ultimately a complete bilayer (at about half the cmc) covers the entire mica substrate. Thanks to the less invasive PFT-AFM imaging mode, our observations not only agree with the theoretical predictions and numerical simulations but also reconcile, at last, the direct observations by means of the AFM imaging technique with the results obtained with other techniques.
Collapse
Affiliation(s)
- Patrick Kékicheff
- Université de Strasbourg, CNRS Institut Charles Sadron , 23 rue du Loess , 67034 Strasbourg Cedex 2, France
| | - Christophe Contal
- Université de Strasbourg, CNRS Institut Charles Sadron , 23 rue du Loess , 67034 Strasbourg Cedex 2, France
| |
Collapse
|
11
|
Janc T, Lukšič M, Vlachy V, Rigaud B, Rollet AL, Korb JP, Mériguet G, Malikova N. Ion-specificity and surface water dynamics in protein solutions. Phys Chem Chem Phys 2018; 20:30340-30350. [PMID: 30488933 PMCID: PMC6318450 DOI: 10.1039/c8cp06061d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ion-specific effects at the protein surface are investigated here in light of the changes they infer to surface water dynamics, as observed by 1H NMR relaxation (at 20 MHz). Two well-known proteins, hen egg-white lysozyme (LZM) and bovine serum albumin (BSA), show qualitatively opposite trends in the transverse relaxation rate, R2(1H), along a series of different monovalent salt anions in the solution. Presence of salt ions increases R2(1H) in the case of lysozyme and diminishes it in the case of BSA. The effect magnifies for larger and more polarizable ions. The same contrasting effect between the two proteins is observed for protein-solvent proton exchange. This hints at subtle effects ion-binding might have on the accessibility of water surface sites on the protein. We suggest that the combination of the density of surface charge residues and surface roughness, at the atomic scale, dictates the response to the presence of salt ions and is proper to each protein. Further, a dramatic increase in R2(1H) is found to correlate closely with the formation of protein aggregates. The same ordering of salts in their ability to aggregate lysozyme, as seen previously by cloud point measurements, is reproduced here by R2(1H). 1H NMR relaxation data is supplemented by 35Cl and 14N NMR relaxation for selected salt ions to probe the ion-binding itself.
Collapse
Affiliation(s)
- Tadeja Janc
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang Y, Casabianca LB. Probing Amino Acid Interaction with a Polystyrene Nanoparticle Surface Using Saturation-Transfer Difference (STD)-NMR. J Phys Chem Lett 2018; 9:6921-6925. [PMID: 30480448 DOI: 10.1021/acs.jpclett.8b02785] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The interaction between individual amino acids and the surface of carboxylate-modified polystyrene nanoparticles in solution was studied using Saturation-Transfer Difference (STD)-Nuclear Magnetic Resonance (NMR). Individual amino acids were screened for nanoparticle binding using an STD-NMR experiment at a fixed saturation time, and STD buildup curves were measured for those amino acids that exhibited significant STD difference signals in the initial screening. The strongest STD effects were measured for protons of aromatic side chains, with relatively weaker effects observed for protons in long-chain aliphatic and positively charged side chains. This indicates that there are several modes of binding to these polystyrene nanoparticles: electrostatic attraction between the negatively charged surface of the carboxylate-modified polystyrene nanoparticle and positively charged amino acids, hydrophobic effects between long aliphatic side chains and the nanoparticle surface, and π-π interactions between aromatic amino acids and aromatic groups in styrene. This information can be used in future studies to predict and understand interactions between nanoparticle surfaces and specific amino acid residues in small peptides and proteins.
Collapse
Affiliation(s)
- Yunzhi Zhang
- Department of Chemistry , Clemson University , Clemson , South Carolina 29634 , United States
| | - Leah B Casabianca
- Department of Chemistry , Clemson University , Clemson , South Carolina 29634 , United States
| |
Collapse
|
13
|
Cai TX, Benjamini D, Komlosh ME, Basser PJ, Williamson NH. Rapid detection of the presence of diffusion exchange. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 297:17-22. [PMID: 30340203 PMCID: PMC6289744 DOI: 10.1016/j.jmr.2018.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 05/08/2023]
Abstract
Diffusion exchange spectroscopy (DEXSY) provides a detailed picture of how fluids in different microenvironments communicate with one another but requires a large amount of data. For DEXSY MRI, a simple measure of apparent exchanging fractions may suffice to characterize and differentiate materials and tissues. Reparameterizing signal intensity from a PGSE-storage-PGSE experiment as a function of the sum, bs=b1+b2, and difference bd=b2-b1 of the diffusion encodings separates diffusion weighting from exchange weighting. Exchange leads to upward curvature along a slice of constant bs. Exchanging fractions can be measured rapidly by a finite difference approximation of the curvature using four data points. The method is generalized for non-steady-state and multi-site exchange. We apply the method to image exchanging fractions and calculate exchange rates of water diffusing across the bulk water interface of a glass capillary array.
Collapse
Affiliation(s)
- Teddy X Cai
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; National Institute of Biomedical Imaging and Bioengineering (BESIP), National Institutes of Health, Bethesda, MD, USA
| | - Dan Benjamini
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Michal E Komlosh
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Peter J Basser
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Nathan H Williamson
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Zhang Y, Xu H, Casabianca LB. Interaction between cyanine dye IR-783 and polystyrene nanoparticles in solution. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:1054-1060. [PMID: 29771468 DOI: 10.1002/mrc.4751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
The interactions between small molecule drugs or dyes and nanoparticles are important to the use of nanoparticles in medicine. Noncovalent adsorption of dyes on nanoparticle surfaces is also important to the development of nanoparticle dual-use imaging contrast agents. In this work, solution-state NMR is used to examine the noncovalent interaction between a near-infrared cyanine dye and the surface of polystyrene nanoparticles in solution. Using 1D proton NMR, we can approximate the number of dye molecules that associate with each nanoparticle for different sized nanoparticles. Saturation-Transfer Difference NMR was also used to show that protons near the positively charged nitrogen in the dye are more strongly associated with the negatively charged nanoparticle surface than protons near the negatively charged sulfate groups of the dye. The methods described here can be used to study similar drug or dye molecules interacting with the surface of organic nanoparticles.
Collapse
Affiliation(s)
- Yunzhi Zhang
- Department of Chemistry, Clemson University, Clemson, SC, USA
| | - Hui Xu
- Department of Chemistry, Clemson University, Clemson, SC, USA
| | | |
Collapse
|
15
|
Chitosan nanoparticles functionalized with β-cyclodextrin: a promising carrier for botanical pesticides. Sci Rep 2018; 8:2067. [PMID: 29391538 PMCID: PMC5794797 DOI: 10.1038/s41598-018-20602-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/17/2018] [Indexed: 01/22/2023] Open
Abstract
Carvacrol and linalool are natural compounds extracted from plants and are known for their insecticidal and repellent activities, respectively. However, their low aqueous solubility, high photosensitivity, and high volatility restrict their application in the control of agricultural pests. The encapsulation of volatile compounds can be an effective way of overcoming such problems. Inclusion complexes between beta-cyclodextrin (β-CD) and carvacrol (CVC) or linalool (LNL) were investigated. Inclusion complexes were prepared by the kneading method. Both complexes presented 1:1 host:guest stoichiometry and the highest affinity constants were observed at 20 °C for both molecules. The nanoparticles containing carvacrol and linalool had mean diameters of 175.2 and 245.8 nm, respectively and high encapsulation efficiencies (<90%) were achieved for both compounds. Biological assays with mites (Tetranychus urticae) showed that the nanoparticles possessed repellency, acaricidal, and oviposition activities against this organism. Nanoencapsulated carvacrol and linalool were significantly more effective in terms of acaricidal and oviposition activities, while the unencapsulated compounds showed better repellency activity. The nanoformulations prepared in this study are good candidates for the sustainable and effective use of botanical compounds in agriculture, contributing to the reduction of environmental contamination, as well as promoting the effective control of pests in agriculture.
Collapse
|
16
|
Leung AHM, Pike SD, Clancy AJ, Yau HC, Lee WJ, Orchard KL, Shaffer MSP, Williams CK. Layered zinc hydroxide monolayers by hydrolysis of organozincs. Chem Sci 2018; 9:2135-2146. [PMID: 29719687 PMCID: PMC5896490 DOI: 10.1039/c7sc04256f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/16/2018] [Indexed: 11/21/2022] Open
Abstract
Organometallic precursors provide a new and clean route to solutions of 2D materials relevant for applications including catalysis, electronics and sensing.
2D inorganic materials and their exfoliated counterparts are both of fundamental interest and relevant for applications including catalysis, electronics and sensing. Here, a new bottom-up synthesis route is used to prepare functionalised nanoplatelets, in apolar organic solvents, via the hydrolysis of organometallic reagents; the products can be prepared in high yield, at room temperature. In particular, a series of layered zinc hydroxides, coordinated by aliphatic carboxylate ligands, were produced by the hydrolysis of diethyl zinc and zinc carboxylate mixtures, optimally at a molar ratio of [COOR]/[Zn] = 0.6. Layered zinc hydroxides coordinated by oleate ligands form high concentration solutions of isolated monolayers (3 nm thick x ∼ 26 nm) in apolar organic solvents (up to 23 mg mL–1 in toluene), as confirmed by both atomic force and transmission electron microscopies of deposited species. The high solubility of the product allows the synthetic pathway to be monitored directly in situ through 1H NMR spectroscopy. The high solubility also provides a route to solution deposition of active functional materials, as illustrated by the formation of nanoporous films of optically transparent porous zinc oxide (1 μm thickness) after annealing at 500 °C. This new organometallic route to 2D materials obviates common complications of top-down exfoliation syntheses, including sonochemical-degradation and low yields of aggregated polydispersed layers, and may potentially be extended to a wide range of systems.
Collapse
Affiliation(s)
- Alice H M Leung
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford , UK OX1 3TA .
| | - Sebastian D Pike
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford , UK OX1 3TA .
| | - Adam J Clancy
- Department of Chemistry , Imperial College London , London , UK SW7 2AZ .
| | - Hin Chun Yau
- Department of Chemistry , Imperial College London , London , UK SW7 2AZ .
| | - Won Jun Lee
- Department of Chemistry , Imperial College London , London , UK SW7 2AZ .
| | | | - Milo S P Shaffer
- Department of Chemistry , Imperial College London , London , UK SW7 2AZ . .,Department of Materials , Imperial College London , London , UK SW7 2AZ
| | - Charlotte K Williams
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford , UK OX1 3TA . .,Department of Chemistry , Imperial College London , London , UK SW7 2AZ .
| |
Collapse
|
17
|
Striolo A, Grady BP. Surfactant Assemblies on Selected Nanostructured Surfaces: Evidence, Driving Forces, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8099-8113. [PMID: 28516778 DOI: 10.1021/acs.langmuir.7b00756] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surfactant adsorption at solid-liquid interfaces is critical for a number of applications of vast industrial interest and can also be used to seed surface-modification processes. Many of the surfaces of interest are nanostructured, as they might present surface roughness at the molecular scale, chemical heterogeneity, as well as a combination of both surface roughness and chemical heterogeneity. These effects provide lateral confinement on the surfactant aggregates. It is of interest to quantify how much surfactant adsorbs on such nanostructured surfaces and how the surfactant aggregates vary as the degree of lateral confinement changes. This review focuses on experimental evidence on selected substrates, including gold- and carbon-based substrates, suggesting that lateral confinement can have pronounced effects both on the amount adsorbed and on the morphology of the aggregates as well as on a systematic study, via diverse simulation approaches, on the effect of lateral confinement on the structure of the surfactant aggregates. Atomistic and coarse-grained simulations conducted for surfactants on graphene sheets and carbon nanotubes are reviewed, as well as coarse-grained simulations for surfactant adsorption on nanostructured surfaces. Finally, we suggest a few possible extensions of these studies that could positively impact a few practical applications. In particular, the simultaneous effect of lateral confinement and of the coadsorption of molecular compounds within the surface aggregates is expected to yield interesting fundamental results with long-lasting consequences in applications ranging from drug delivery to the design of advanced materials.
Collapse
Affiliation(s)
- Alberto Striolo
- Department of Chemical Engineering University College London , London, WC1E 7JE United Kingdom
| | - Brian Patrick Grady
- School of Chemical, Biological and Materials Engineering, University of Oklahoma , Norman, Oklahoma 73019, United States
| |
Collapse
|
18
|
|
19
|
Shairgojray BA, Dar AA, Bhat BA. Cationic chiral surfactant based micelle-guided asymmetric Morita-Baylis-Hillman reaction. CATAL COMMUN 2016. [DOI: 10.1016/j.catcom.2016.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
20
|
Ling NN, Haber A, Fridjonsson EO, May EF, Johns ML. Shear-induced emulsion droplet diffusion studies using NMR. J Colloid Interface Sci 2016; 464:229-37. [DOI: 10.1016/j.jcis.2015.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/06/2015] [Accepted: 11/07/2015] [Indexed: 12/30/2022]
|
21
|
Björkegren SMS, Nordstierna L, Törncrona A, Persson ME, Palmqvist AE. Surface activity and flocculation behavior of polyethylene glycol-functionalized silica nanoparticles. J Colloid Interface Sci 2015; 452:215-223. [DOI: 10.1016/j.jcis.2015.04.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 11/15/2022]
|
22
|
|
23
|
NMR studies of emulsion microstructure approaching the phase inversion point. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.08.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
WITHDRAWN: Ionic liquid mixtures with tunable physicochemical properties. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Gattuso G, Notti A, Pappalardo S, Parisi MF, Pisagatti I, Patanè S. Encapsulation of monoamine neurotransmitters and trace amines by amphiphilic anionic calix[5]arene micelles. NEW J CHEM 2014. [DOI: 10.1039/c4nj01184h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Paudel A, Geppi M, Mooter GVD. Structural and Dynamic Properties of Amorphous Solid Dispersions: The Role of Solid-State Nuclear Magnetic Resonance Spectroscopy and Relaxometry. J Pharm Sci 2014; 103:2635-2662. [DOI: 10.1002/jps.23966] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 01/17/2023]
|
27
|
Sinnaeve D. Simultaneous solvent and J-modulation suppression in PGSTE-based diffusion experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 245:24-30. [PMID: 24926914 DOI: 10.1016/j.jmr.2014.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/25/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
The most favourable solvent suppression methods that have been applied to PGSTE experiments for the measurement of diffusion are WATERGATE and excitation sculpting. However, both methods come with significant J-modulation line-shape distortions on multiplets, a phenomenon that is known to be of particular concern for DOSY data processing. Here, two new PGSTE experiments are proposed that suppress both the solvent peak and J-modulation based on the perfect echo WATERGATE sequence. This allows narrow suppression bandwidths and thus measurement of diffusion on peaks close to the solvent peak. Both sequences perform admirably and the better option depends on the priority one puts on the quality of the solvent suppression or signal loss due to T2 weighting. Gradient-based solvent suppression in PGSTE experiments can often be compromised by the variable, diffusion-encoding gradient pulses. Special emphasis is put on how to maximise the robustness of the solvent suppression.
Collapse
Affiliation(s)
- Davy Sinnaeve
- NMR and Structure Analysis Unit, Department of Organic Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Gent, Belgium.
| |
Collapse
|
28
|
Himmelein S, Sporenberg N, Schönhoff M, Ravoo BJ. Size-selective permeation of water-soluble polymers through the bilayer membrane of cyclodextrin vesicles investigated by PFG-NMR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3988-3995. [PMID: 24650278 DOI: 10.1021/la500226z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cyclodextrin vesicles (CDVs) consist of a bilayer of amphiphilic cyclodextrins (CDs). CDVs exhibit CD cavities at their surface that are able to recognize and bind hydrophobic guest molecules via size-selective inclusion. In this study, the permeability of α- and β-CDVs is investigated by pulsed field gradient-stimulated echo (PFG-STE) nuclear magnetic resonance. Diffusion experiments with water and two types of water-soluble polymers, polyethylene glycol (PEG) and polypropylene glycol (PPG), revealed three main factors that influence the exchange rate and permeability of CDVs. First, the length of the hydrophobic chain of the CD amphiphile plays a crucial role. Reasonably, vesicles consisting of amphiphiles with a longer aliphatic chain are less permeable since both membrane thickness and melting temperature T(m) increase. Second, the exchange rate through the bilayer membrane depends on the molecular weight of the polymer and decreases with increasing weight of the polymer. Most interestingly, a size-selective distinction of permeation due to the embedded CDs in the bilayer membrane was found. The mechanism of permeation is shown to occur through the CD cavity, such that depending on the size of the cavity, permeation of polymers with different cross-sectional diameters takes place. Whereas PPG permeates through the membrane of β-CD vesicles, it does not permeate α-CD vesicles.
Collapse
Affiliation(s)
- Sabine Himmelein
- Organic Chemistry Institute and Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstraße 40, 48149 Münster, Germany
| | | | | | | |
Collapse
|
29
|
Cooper CL, Cosgrove T, van Duijneveldt JS, Murray M, Prescott SW. Competition between polymers for adsorption on silica: a solvent relaxation NMR and small-angle neutron scattering study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:12670-12678. [PMID: 24059561 DOI: 10.1021/la402556g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The competition between poly(vinylpyrrolidone) and poly(ethylene oxide) for adsorption at the silica surface was studied by solvent relaxation nuclear magnetic resonance and small-angle neutron scattering. The additive nature of the NMR relaxation rate enhancement was used to observe changes in the train layer when the two polymers were in direct competition for an increasing weight percentage of silica. PVP is shown to displace preadsorbed PEO from the particle surface, and this was observed for a range of PVP molecular weights. SANS measurements were found to give detailed information on the adsorption of the polymers in the separate systems; however, only qualitative information on the adsorption of the polymers could be obtained from the mixed samples. At a total polymer concentration of 0.4% w/v with 1.1% w/v silica, the SANS data were consistent with PVP adsorbing at the surface and dPEO remaining in solution, in agreement with the NMR data.
Collapse
Affiliation(s)
- Catherine L Cooper
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | | | | | | | | |
Collapse
|