1
|
Lan L, Pan Y, Zhou L, Kuang H, Zhang L, Wen B. Theoretical model of dynamics and stability of nanobubbles on heterogeneous surfaces. J Colloid Interface Sci 2025; 678:322-333. [PMID: 39208760 DOI: 10.1016/j.jcis.2024.08.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Surface nanobubbles have revealed a new mechanism of gas-liquid-solid interaction at the nanoscale; however, the nanobubble evolution on real substrates is still veiled, because the experimental observation of contact line motions at the nanoscale is too difficult. HYPOTHESIS This study proposes a theoretical model to describe the dynamics and stability of nanobubbles on heterogeneous substrates. It simultaneously considers the diffusive equilibrium of the liquid-gas interface and the mechanical equilibrium at the contact line, and introduces a surface energy function to express the substrate's heterogeneity. VALIDATION The present model unifies the nanoscale stability and the microscale instability of surface bubbles. The theoretical predictions are highly consistent to the nanobubble morphology on heterogeneous surfaces observed in experiments. As the nanobubbles grow, a lower Laplace pressure leads to weaker gas adsorption, and the mechanical equilibrium can eventually revert to the classical Young-Laplace equation above microscale. FINDINGS The analysis results indicate that both the decrease in substrate surface energy and the increase in gas oversaturation are more conducive to the nucleation and growth of surface nanobubbles, leading to larger stable sizes. The larger surface energy barriers result in the stronger pinning, which is beneficial for achieving stability of the pinned bubbles. The present model is able to reproduce the continual behaviors of the three-phase contact line during the nanobubble evolution, e.g., "pinning, depinning, slipping and jumping" induced by the nanoscale defects.
Collapse
Affiliation(s)
- Lili Lan
- College of Physical Science and Technology, Guangxi Normal University, Guilin 541004, China
| | - Yongcai Pan
- Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin 541004, China
| | - Limin Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Hua Kuang
- College of Physical Science and Technology, Guangxi Normal University, Guilin 541004, China.
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Binghai Wen
- College of Physical Science and Technology, Guangxi Normal University, Guilin 541004, China; Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
2
|
Ren Z, Xu P, Han H, Ohl CD, Zuo Z, Liu S. Removal of surface-attached micro- and nanobubbles by ultrasonic cavitation in microfluidics. ULTRASONICS SONOCHEMISTRY 2024; 109:107011. [PMID: 39121600 PMCID: PMC11365372 DOI: 10.1016/j.ultsonch.2024.107011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Surface-attached micro- and nanobubbles are known for their resistance to external forces. This study experimentally and theoretically investigates their response to strong ultrasonic fields. Surface-attached micro- and nanobubbles with contact radii from 2 μm to 20 μm are generated in a microchannel and exposed to ultrasound through a vibrating glass substrate. At a driving frequency over 200 kHz up to 2 MHz tested, no significant response from the micro- and nanobubbles is observed. By contrast, at 100 kHz-200 kHz, ultrasonic cavitation bubbles appear in the microchannel and migrate toward the surface micro- and nanobubbles. Then the surface micro- and nanobubbles merge with the ultrasonic cavitation bubbles, detach from the substrate, and become free gaseous nuclei susceptible to further cavitation. Notably, the removal process leaves no observable residue. Theoretical analysis suggests that the directional migration of cavitation bubbles is driven by mutual acoustic radiation forces. This work demonstrates that ultrasonic fields can effectively remove surface micro- and nanobubbles, transforming them into free gaseous cavitation nuclei.
Collapse
Affiliation(s)
- Zibo Ren
- State Key Laboratory of Hydroscience and Engineering, and Department of Energy and Power Engineering, Tsinghua University, 100084 Beijing, China
| | - Peng Xu
- State Key Laboratory of Hydroscience and Engineering, and Department of Energy and Power Engineering, Tsinghua University, 100084 Beijing, China
| | - Huan Han
- State Key Laboratory of Hydroscience and Engineering, and Department of Energy and Power Engineering, Tsinghua University, 100084 Beijing, China
| | - Claus-Dieter Ohl
- Department Soft Matter, Institute for Physics, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Zhigang Zuo
- State Key Laboratory of Hydroscience and Engineering, and Department of Energy and Power Engineering, Tsinghua University, 100084 Beijing, China.
| | - Shuhong Liu
- State Key Laboratory of Hydroscience and Engineering, and Department of Energy and Power Engineering, Tsinghua University, 100084 Beijing, China.
| |
Collapse
|
3
|
Jayasankar G, Koilpillai J, Narayanasamy D. A Systematic Study on Long-acting Nanobubbles: Current Advancement and Prospects on Theranostic Properties. Adv Pharm Bull 2024; 14:278-301. [PMID: 39206408 PMCID: PMC11347731 DOI: 10.34172/apb.2024.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 09/04/2024] Open
Abstract
Delivery of diagnostic drugs via nanobubbles (NBs) has shown to be an emerging field of study. Due to their small size, NBs may more easily travel through constricted blood vessels and precisely target certain bodily parts. NB is considered the major treatment for cancer treatment and other diseases which are difficult to diagnose. The field of NBs is dynamic and continues to grow as researchers discover new properties and seek practical applications in various fields. The predominant usage of NBs in novel drug delivery is to enhance the bioavailability, and controlled drug release along with imaging properties NBs are important because they may change interfacial characteristics including surface force, lubrication, and absorption. The quick diffusion of gas into the water was caused by a hypothetical film that was stimulated and punctured by a strong acting force at the gas/water contact of the bubble. In this article, various prominent aspects of NBs have been discussed, along with the long-acting nature, and the theranostical aspect which elucidates the potential marketed drugs along with clinical trial products. The article also covers quality by design aspects, different production techniques that enable method-specific therapeutic applications, increasing the floating time of the bubble, and refining its properties to enhance the prepared NB's quality. NB containing both analysis and curing properties makes it special from other nano-carriers. This work includes all the possible methods of preparing NB, its application, all marketed drugs, and products in clinical trials.
Collapse
Affiliation(s)
| | | | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institution of Science and Technology, Kattankulathur, Chengalpattu, India
| |
Collapse
|
4
|
Yang H, Xing Y, Zhang F, Gui X, Cao Y. Contact angle and stability of interfacial nanobubble supported by gas monolayer. FUNDAMENTAL RESEARCH 2024; 4:35-42. [PMID: 39659843 PMCID: PMC11630698 DOI: 10.1016/j.fmre.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Since solid-liquid interfacial nanobubbles (INBs) were first imaged, their long-term stability and large contact angle have been perplexing scientists. This study aimed to investigate the influence of internal gas density and external gas monolayers on the contact angle and stability of INB using molecular dynamics simulations. First, the contact angle of a water droplet was simulated at different nitrogen densities. The results showed that the contact angle increased sharply with an increase in nitrogen density, which was mainly caused by the decrease in solid-gas interfacial tension. However, when the nitrogen density reached 2.57 nm-3, an intervening gas monolayer (GML) was formed between the solid and water. After the formation of GML, the contact angle slightly increased with increasing gas density. The contact angle increased to 180° when the nitrogen density reached 11.38 nm-3, indicating that INBs transformed into a gas layer when they were too small. For substrates with different hydrophobicities, the contact angle after the formation of GML was always larger than 140° and it was weakly correlated with substrate hydrophobicity. The increase in contact angle with gas density represents the evolution of contact angle from macro- to nano-bubble, while the formation of GML may correspond to stable INBs. The potential of mean force curves demonstrated that the substrate with GML could attract gas molecules from a longer distance without the existence of a potential barrier compared with the bare substrate, indicating the potential of GML to act as a gas-collecting panel. Further research indicated that GML can function as a channel to transport gas molecules to INBs, which favors stability of INBs. This research may shed new light on the mechanisms underlying abnormal contact angle and long-term stability of INBs.
Collapse
Affiliation(s)
- Haichang Yang
- Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Yaowen Xing
- Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China
| | - Fanfan Zhang
- Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Xiahui Gui
- Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China
| | - Yijun Cao
- Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China
- Henan Province Industrial Technology Research Institution of Resources and Materials, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur JF, Actis P, Kanoufi F, Unwin PR. The New Era of High-Throughput Nanoelectrochemistry. Anal Chem 2023; 95:319-356. [PMID: 36625121 PMCID: PMC9835065 DOI: 10.1021/acs.analchem.2c05105] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Paolo Ciocci
- Université
Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | - Samuel Confederat
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
- Faculty
of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
6
|
Fang H, Geng Z, Guan N, Zhou L, Zhang L, Hu J. Controllable generation of interfacial gas structures on the graphite surface by substrate hydrophobicity and gas oversaturation in water. SOFT MATTER 2022; 18:8251-8261. [PMID: 36278324 DOI: 10.1039/d2sm00849a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Spherical nanobubbles and flat micropancakes are two typical states of gas aggregation on solid-liquid surfaces. Micropancakes, which are quasi-two-dimensional gaseous structures, are often produced accompanied by surface nanobubbles. Compared with surface nanobubbles, the intrinsic properties of micropancakes are barely understood due to the challenge of the highly efficient preparation and characterization of such structures. The hydrophobicity of the substrate and gas saturation of solvents are two crucial factors for the nucleation and stability of interfacial gas domains. Herein, we investigated the synergistic effect of the surface hydrophobicity and gas saturation on the generation of interfacial gas structures. Different surface hydrophobicities were achieved by the aging process of highly oriented pyrolytic graphite (HOPG). The results indicated that higher surface hydrophobicity and gas oversaturation could create surface nanobubbles and micropancakes with higher efficiency. Strong surface hydrophobicity could promote nanobubble nucleation and higher gas saturation would induce bigger nanobubbles. Degassed experiments could remove most of these structures and prove that they are actually gaseous domains. Finally, we draw a region diagram to describe the formation conditions of nanobubbles, micropancakes based on observations. These results would be very helpful for further understanding the formation of interfacial gas structures on the hydrophobic surface under different gas saturation.
Collapse
Affiliation(s)
- Hengxin Fang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanli Geng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Guan
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limin Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Lijuan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jun Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| |
Collapse
|
7
|
Fang H, Qi J, Wang Y, Yuan K, Zhang L, Hu J. Interfacial Micropancakes: Gas or Contaminations? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7914-7920. [PMID: 35713371 DOI: 10.1021/acs.langmuir.2c00390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Micropancake, a flat domain with micrometer-scale lateral size and a few nanometer thickness, is usually accompanied by the generation of interfacial nanobubbles at the liquid/solid surfaces. Unlike the nanobubbles, micropancakes are difficult to be produced efficiently, impeding further investigations of their mysterious properties. Very recently, An et al. even argued that the previously observed micropancakes were most likely the contaminate, not the gas layers. Herein, to reveal the nature of micropancakes with solid evidence, we presented the in situ characterization of micropancakes at a highly oriented pyrolytic graphite (HOPG) surface produced by the ethanol-water exchange or gas-supersaturated water. By washing with deeply degassed water (DW), the dissolution of those micropancakes was clearly observed, indicating that they may very well be composed of gas. In addition, the analysis of the force measurements showed the intrinsic differences between those gaseous micropancakes and the insoluble organic films. The data and results supported the interpretation that the real existence of gas micropancakes at liquid/solid surfaces.
Collapse
Affiliation(s)
- Hengxin Fang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juncheng Qi
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiwei Yuan
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijuan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jun Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| |
Collapse
|
8
|
Suvira M, Zhang B. Single-Molecule Interactions at a Surfactant-Modified H 2 Surface Nanobubble. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13816-13823. [PMID: 34788049 DOI: 10.1021/acs.langmuir.1c01686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In schematics and cartoons, the gas-liquid interface is often drawn as solid lines that aid in distinguishing the separation of the two phases. However, on the molecular level, the structure, shape, and size of the gas-liquid interface remain elusive. Furthermore, the interactions of molecules at gas-liquid interfaces must be considered in various contexts, including atmospheric chemical reactions, wettability of surfaces, and numerous other relevant phenomena. Hence, understanding the structure and interactions of molecules at the gas-liquid interface is critical for further improving technologies that operate between the two phases. Electrochemically generated surface nanobubbles provide a stable, reproducible, and high-throughput platform for the generation of a nanoscale gas-liquid boundary. We use total internal reflection fluorescence microscopy to image single-fluorophore labeling of surface nanobubbles in the presence of a surfactant. The accumulation of a surfactant on the nanobubble surface changes the interfacial properties of the gas-liquid interface. The single-molecule approach reveals that the fluorophore adsorption and residence lifetime at the interface is greatly impacted by the charge of the surfactant layer at the bubble surface. We demonstrate that the fluorescence readout is either short- or long-lived depending on the repulsive or attractive environment, respectively, between fluorophores and surfactants. Additionally, we investigated the effect of surfactant chain length and salt type and concentration on the fluorophore lifetime at the nanobubble surface.
Collapse
Affiliation(s)
- Milomir Suvira
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
9
|
|