1
|
Sudalaimani S, Esokkiya A, Kumar KS, Giribabu K. Electrified liquid - liquid interface strategy for sensing lactic acid in buttermilk extract. Food Chem 2025; 463:141493. [PMID: 39366093 DOI: 10.1016/j.foodchem.2024.141493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Lactic acid (LA) serves as a freshness marker in certain foods. In the present work, electrified interfaces of different nature (i.e., liquid-liquid and liquid-organogel) have been developed for the quantification of LA. Electrochemical sensing of LA at the liquid-organogel interface revealed that adsorptive stripping voltammetry, with a preconcentration time of 500 s offered better sensitivity. Electroanalytical ability of LA under optimized conditions displayed a detection limit of 0.97 μM and 0.71 μM with sensitivity of 2.84 nA μM-1 and 3.59 nA μM-1 for liquid-liquid and liquid-organogel interfaces respectively. Quantification of LA using the developed methodology has been demonstrated in buttermilk as the real matrix. Analysis demonstrate that electrified liquid-liquid and liquid-organogel interfaces are promising approach for sensing LA in buttermilk extract.
Collapse
Affiliation(s)
- S Sudalaimani
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - A Esokkiya
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - K Sanjeev Kumar
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - K Giribabu
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
2
|
Fu Y, Xie B, Liu M, Hou S, Zhu Q, Kuhn A, Zhang L, Yang W, Sojic N. Bipolar electrochemiluminescence at the water/organic interface. Chem Sci 2024; 15:19907-19912. [PMID: 39568879 PMCID: PMC11575568 DOI: 10.1039/d4sc06103a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Electrochemiluminescence (ECL) has emerged as a valuable tool for understanding multiphasic and compartmentalized systems, which have crucial wide-ranging applications across diverse fields. However, ECL reactions are limited to the vicinity of the electrode surface due to spatial constraints of electron transfer and the short lifetime of radical species, making ECL emission in bulk multiphasic solution challenging. To address this limitation, we propose a novel bipolar electrochemistry (BPE) approach for wireless dual-color ECL emission at the water/organic (w/o) interface. Firstly, amphiphilic glassy carbon (GC) microbeads with distinct hydrophilic and hydrophobic regions are prepared by bipolar electrografting of hydrophobic trifluoromethyl diazonium salt, then the resulting Janus beads are positioned at the w/o interface. Subsequently, two model ECL systems containing luminol and H2O2 in the aqueous phase, and [Ru(bpy)3]2+ and benzoyl peroxide (BPO) in the organic phase, are selected based on their solubility to confine light-emitting reactions to their respective phases. Upon application of an electric field perpendicular to the interface, the Janus microbeads get polarized, triggering simultaneous oxidative blue ECL (425 nm) and reductive red ECL (620 nm) in the aqueous and organic phases, respectively. Taking advantage of ECL imaging, the potential gradient distribution on the GC microbead at the w/o interface is revealed, indicating a "pseudo-closed" bipolar system due to limited ion transfer between phases. We also investigate the effect of changing the electric field direction parallel to the interface, which alters the ECL emission area from a hemisphere to a quarter of the microbead's surface. This bipolar ECL approach at the w/o interface not only offers opportunities for imaging the aqueous phase and organic phase simultaneously, but also enables ECL imaging and light generation in the bulk solution, thus overcoming the usual spatial limitation requiring proximity to the electrode surface.
Collapse
Affiliation(s)
- Yuheng Fu
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 China
| | - Bingbing Xie
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 China
| | - Miaoxia Liu
- University Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
| | - Shaojuan Hou
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 China
| | - Qunyan Zhu
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 China
| | - Alexander Kuhn
- University Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
| | - Lin Zhang
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 China
| | - Wensheng Yang
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| | - Neso Sojic
- University Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
| |
Collapse
|
3
|
Cai Y, Wang F, Zhang H, Nestler B. Chemo-elasto-electro free energy of non-uniform system in the diffuse interface context. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:495702. [PMID: 39222654 DOI: 10.1088/1361-648x/ad7660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
In the present work, we propose an alternative approach for deriving the free energy formulation of a non-uniform system. Compared with the work of Cahn and Hilliard (1958 J.Chem. Phys.28258-67), our approach provides a more comprehensive explanation for the individual energy contribution in a non-uniform system, including entropy, interaction energy, and internal energy. By employing a fundamental mathematical calculus, we reformulate the local composition within the interface region. Utilizing the reformulated local composition as well as classic thermodynamic principles, we establish formal expressions for entropy, interaction energy, and the internal energy, which are functions of both composition and composition gradients. We obtain a comprehensive free energy expression for a non-uniform system by integrating these energy density formulations. The obtained free energy expression is consistent with the formula type of Cahn and Hilliard and prodives more deeper physical interpretation. Moreover, using the same approach, we derive formulations for elastic energy and electric potential energy in a non-uniform system. However, the proposed approach encounters a limitation in the special case of a non-uniform fluid contacting a solid substrate. Due to the significant difference in the length scales between the solid-fluid and fluid-fluid interfaces, the wall free energy formulation based on the aforementioned concept is unsuitable for this multi-scale system. To address this limitation, we reformulate the wall free energy as a function of the average composition over the solid-fluid interface. Additionally, the previous derivation relies on an artificial treatment of describing the composition variation across the interface by a smooth monotone function, while the true nature of this variation remains unclear. By utilizing the concept of average composition, we circumvent the open question of how the composition varies across the interface region. Our work provides a thorough understanding for the construction of free energy formulations for a non-uniform system in condensed matter physics.
Collapse
Affiliation(s)
- Yuhan Cai
- Institute of Applied Materials-Microstructure Modelling and Simulation, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Fei Wang
- Institute of Applied Materials-Microstructure Modelling and Simulation, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Haodong Zhang
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Britta Nestler
- Institute of Applied Materials-Microstructure Modelling and Simulation, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Digital Materials Science, Karlsruhe University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany
| |
Collapse
|
4
|
Vannoy KJ, Edwards MQ, Renault C, Dick JE. An Electrochemical Perspective on Reaction Acceleration in Microdroplets. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:149-171. [PMID: 38594942 DOI: 10.1146/annurev-anchem-061622-030919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Analytical techniques operating at the nanoscale introduce confinement as a tool at our disposal. This review delves into the phenomenon of accelerated reactivity within micro- and nanodroplets. A decade of accelerated reactivity observations was succeeded by several years of fundamental studies aimed at mechanistic enlightenment. Herein, we provide a brief historical context for rate enhancement in and around micro- and nanodroplets and summarize the mechanisms that have been proposed to contribute to such extraordinary reactivity. We highlight recent electrochemical reports that make use of restricted mass transfer to enhance electrochemical reactions and/or quantitatively measure reaction rates within droplet-confined electrochemical cells. A comprehensive approach to nanodroplet reactivity is paramount to understanding how nature takes advantage of these systems to provide life on Earth and, in turn, how to harness the full potential of such systems.
Collapse
Affiliation(s)
- Kathryn J Vannoy
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
| | | | - Christophe Renault
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
- 2Current Address: Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Jeffrey E Dick
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
- 3Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
5
|
Ow MJK, Yeow EKL. Revealing the Existence of Long-Range Liquid-Liquid Interfacial Potential in Phase-Transfer Processes. J Phys Chem Lett 2024; 15:6241-6248. [PMID: 38842186 DOI: 10.1021/acs.jpclett.4c01135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
By employing fluorescence wide-field microscopy and a nanoparticle-based phase transfer catalyst (PTC), consisting of a fluorescent silica nanoparticle functionalized with trioctylpropylammonium bromide, we demonstrate that in the presence of NaOH, single nanoparticles display subdiffusive motion along the axis normal to an aqueous liquid-organic liquid interface. This is because of an extended interfacial potential with a shallow well (∼1 kBT) that stretches a few μm into the organic phase, in contrast to previous molecular dynamics studies that reported narrow interfaces on the order of ∼1 nm. Spontaneous interfacial emulsification induced by NaOH results in the propagation of water-in-oil nanoemulsions into the organic solvent that creates an equilibrium hybrid-solvent composition that solvates the PTC. A greater mobility and longer residence time of the PTC at the potential well enhance the interfacial phase transfer process and catalytic efficiency.
Collapse
Affiliation(s)
- Matthew J K Ow
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Edwin K L Yeow
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
6
|
Huang SH, Parandhaman M, Farnia S, Kim J, Amemiya S. Nanoelectrochemistry at liquid/liquid interfaces for analytical, biological, and material applications. Chem Commun (Camb) 2023; 59:9575-9590. [PMID: 37458703 PMCID: PMC10416082 DOI: 10.1039/d3cc01982a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Herein, we feature our recent efforts toward the development and application of nanoelectrochemistry at liquid/liquid interfaces, which are also known as interfaces between two immiscible electrolyte solutions (ITIES). Nanopipets, nanopores, and nanoemulsions are developed to create the nanoscale ITIES for the quantitative electrochemical measurement of ion transfer, electron transfer, and molecular transport across the interface. The nanoscale ITIES serves as an electrochemical nanosensor to enable the selective detection of various ions and molecules as well as high-resolution chemical imaging based on scanning electrochemical microscopy. The powerful nanoelectroanalytical methods will be useful for biological and material applications as illustrated by in situ studies of solid-state nanopores, nuclear pore complexes, living bacteria, and advanced nanoemulsions. These studies provide unprecedented insights into the chemical reactivity of important biological and material systems even at the single nanostructure level.
Collapse
Affiliation(s)
- Siao-Han Huang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | | | - Solaleh Farnia
- Department of Chemistry, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Jiyeon Kim
- Department of Chemistry, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
7
|
Reyes-Morales J, Dick JE. Electrochemical-Shock Synthesis of Nanoparticles from Sub-femtoliter Nanodroplets. Acc Chem Res 2023; 56:1178-1189. [PMID: 37155578 DOI: 10.1021/acs.accounts.3c00050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
ConspectusNanoparticles have witnessed immense development in the past several decades due to their intriguing physicochemical properties. The modern chemist is interested not only in methods of synthesizing nanoparticles with tunable properties but also in the chemistry that nanoparticles can drive. While several methods exist to synthesize nanoparticles, it is often advantageous to put nanoparticles on a variety of conductive substrates for multiple applications (such as energy storage and conversion). Despite enjoying over 200 years of development, electrodeposition of nanoparticles suffers from a lack of control over nanoparticle size and morphology. There have been heroic efforts to address these issues over time. With an understanding that structure-function studies are imperative to understand the chemistry of nanoparticles, new methods are necessary to electrodeposit a variety of nanoparticles with control over macromorphology and also microstructure.This Account details our group's efforts in overcoming challenges of classical nanoparticle electrodeposition by electrodepositing nanoparticles from water nanodroplets. When a nanodroplet full of metal salt precursor is incident on the electrode biased sufficiently negative to drive electroplating, nanoparticles form at a fast rate (on the order of microseconds to milliseconds). We start with the general nuts-and-bolts of the experiment (nanodroplet formation and methods for electrodeposition). The deposition of new nanomaterials often requires one to develop new methods of measurement, and we detail new measurement tools for quantifying nanoparticle porosity and nanopore tortuosity within single nanoparticles. We achieve nanopore characterization by using Focused Ion Beam milling and Scanning Electron Microscopy. Owing to the small size of the nanodroplets and fast mass transfer (the contents of a femtoliter droplet can be electrolyzed in only a few milliseconds), the use of nanodroplets also allows the electrodeposition of high entropy alloy nanoparticles at room temperature.We detail how a deep understanding of ion transfer mechanisms can be used to expand the library of possible metals that can be deposited. Furthermore, simple ion changes in the dispersed droplet phase can decrease the cost per experiment by orders of magnitude. Finally, electrodeposition in aqueous nanodroplets can also be combined with stochastic electrochemistry for a variety of interesting studies. We detail the quantification of the growth kinetics of single nanoparticles in single aqueous nanodroplets. Nanodroplets can also be used as tiny reactors to trap only a few molecules of a metal salt precursor. Upon reduction to the zerovalent metal, electrocatalysis at very small metal clusters can be probed and evaluated with time using steady-state electrochemical measurements. Overall, this burgeoning synthetic tool is providing unexpected avenues of tunability of metal nanoparticles on conductive substrates.
Collapse
Affiliation(s)
- Joshua Reyes-Morales
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
- Elmore School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
8
|
Haber E, Douvidzon M, Maayani S, Carmon T. A Liquid Mirror Resonator. MICROMACHINES 2023; 14:624. [PMID: 36985031 PMCID: PMC10052182 DOI: 10.3390/mi14030624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
We present the first experimental demonstration of a Fabry‒Perot resonator that utilizes total internal reflection from a liquid-gas interface. Our hybrid resonator hosts both optical and capillary waves that mutually interact. Except for the almost perfect reflection by the oil-air interface at incident angles smaller than the critical angle, reflections from the liquid-phase boundary permit optically examining thermal fluctuations and capillary waves at the oil surface. Characterizing our optocapillary Fabry‒Perot reveals optical modes with transverse cross-sectional areas of various shapes and longitudinal modes that are separated by the free spectral range. The optical finesse of our hybrid optocapillary resonator is Fo = 60, the optical quality factor is Qo = 20 million, and the capillary quality factor is Qc = 6. By adjusting the wavelength of our laser near the optical resonance wavelength, we measure the liquid's Brownian fluctuations. As expected, the low-viscosity liquid exhibits a distinct frequency of capillary oscillation, indicating operation in the underdamped regime. Conversely, going to the overdamped regime reveals no such distinct capillary frequency. Our optocapillary resonator might impact fundamental studies and applications in surface science by enabling optical interrogation, excitation, and cooling of capillary waves residing in a plane. Moreover, our optocapillary Fabry‒Perot might permit photographing thermal capillary oscillation, which the current state-of-the-art techniques do not support.
Collapse
Affiliation(s)
- Elad Haber
- Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel;
| | - Mark Douvidzon
- Mark Douvidzon, Solid State Institute and Physics Department, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Shai Maayani
- Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tal Carmon
- School of Electrical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|