1
|
Cevatemre B, Bulut I, Dedeoglu B, Isiklar A, Syed H, Bayram OY, Bagci-Onder T, Acilan C. Exploiting epigenetic targets to overcome taxane resistance in prostate cancer. Cell Death Dis 2024; 15:132. [PMID: 38346967 PMCID: PMC10861560 DOI: 10.1038/s41419-024-06422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024]
Abstract
The development of taxane resistance remains a major challenge for castration resistant prostate cancer (CR-PCa), despite the effectiveness of taxanes in prolonging patient survival. To uncover novel targets, we performed an epigenetic drug screen on taxane (docetaxel and cabazitaxel) resistant CR-PCa cells. We identified BRPF reader proteins, along with several epigenetic groups (CBP/p300, Menin-MLL, PRMT5 and SIRT1) that act as targets effectively reversing the resistance mediated by ABCB1. Targeting BRPFs specifically resulted in the resensitization of resistant cells, while no such effect was observed on the sensitive compartment. These cells were successfully arrested at the G2/M phase of cell cycle and underwent apoptosis upon BRPF inhibition, confirming the restoration of taxane susceptibility. Pharmacological inhibition of BRPFs reduced ABCB1 activity, indicating that BRPFs may be involved in an efflux-related mechanism. Indeed, ChIP-qPCR analysis confirmed binding of BRPF1 to the ABCB1 promoter suggesting direct regulation of the ABCB1 gene at the transcriptional level. RNA-seq analysis revealed that BRPF1 knockdown affects the genes enriched in mTORC1 and UPR signaling pathways, revealing potential mechanisms underlying its functional impact, which is further supported by the enhancement of taxane response through the combined inhibition of ABCB1 and mTOR pathways, providing evidence for the involvement of multiple BRPF1-regulated pathways. Beyond clinical attributes (Gleason score, tumor stage, therapy outcome, recurrence), metastatic PCa databases further supported the significance of BRPF1 in taxane resistance, as evidenced by its upregulation in taxane-exposed PCa patients.
Collapse
Affiliation(s)
- Buse Cevatemre
- Koc University Research Center for Translational Medicine, Istanbul, Turkey
| | - Ipek Bulut
- Koc University Graduate School of Health Sciences, Istanbul, Turkey
| | - Beyza Dedeoglu
- Koc University Graduate School of Science and Engineering, Istanbul, Turkey
| | - Arda Isiklar
- Koc University Graduate School of Health Sciences, Istanbul, Turkey
| | - Hamzah Syed
- Koc University Research Center for Translational Medicine, Istanbul, Turkey
- Koc University School of Medicine, Sariyer, Turkey
| | | | - Tugba Bagci-Onder
- Koc University Research Center for Translational Medicine, Istanbul, Turkey
- Koc University School of Medicine, Sariyer, Turkey
| | - Ceyda Acilan
- Koc University Research Center for Translational Medicine, Istanbul, Turkey.
- Koc University School of Medicine, Sariyer, Turkey.
| |
Collapse
|
2
|
Martinez MJ, Lyles RD, Peinetti N, Grunfeld AM, Burnstein KL. Inhibition of the serine/threonine kinase BUB1 reverses taxane resistance in prostate cancer. iScience 2023; 26:107681. [PMID: 37705955 PMCID: PMC10495664 DOI: 10.1016/j.isci.2023.107681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Men with incurable castration resistant prostate cancer (CRPC) are typically treated with taxanes; however, drug resistance rapidly develops. We previously identified a clinically relevant seven gene network in aggressive CRPC, which includes the spindle assembly checkpoint (SAC) kinase BUB1. Since SAC is deregulated in taxane resistant PC, we evaluated BUB1 and found that it was over-expressed in advanced PC patient datasets and taxane resistant PC cells. Treatment with a specific BUB1 kinase inhibitor re-sensitized resistant CRPC cells, including cells expressing constitutively active androgen receptor (AR) variants, to clinically used taxanes. Consistent with a role of AR variants in taxane resistance, ectopically expressed AR-V7 increased BUB1 levels and reduced sensitivity to taxanes. This work shows that disruption of BUB1 kinase activity reverted resistance to taxanes, which is essential to advancing BUB1 as a potential therapeutic target for intractable chemotherapy resistant CRPC including AR variant driven CRPC, which lacks durable treatment options.
Collapse
Affiliation(s)
- Maria J. Martinez
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Rolando D.Z. Lyles
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
- Sheila and David Fuente Graduate Program in Cancer Biology, Miami, FL 33136, USA
| | - Nahuel Peinetti
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Alex M. Grunfeld
- Sheila and David Fuente Graduate Program in Cancer Biology, Miami, FL 33136, USA
| | - Kerry L. Burnstein
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| |
Collapse
|
3
|
Rizvi N, Ademuyiwa FO, Cao ZA, Chen HX, Ferris RL, Goldberg SB, Hellmann MD, Mehra R, Rhee I, Park JC, Kluger H, Tawbi H, Sullivan RJ. Society for Immunotherapy of Cancer (SITC) consensus definitions for resistance to combinations of immune checkpoint inhibitors with chemotherapy. J Immunother Cancer 2023; 11:e005920. [PMID: 36918220 PMCID: PMC10016262 DOI: 10.1136/jitc-2022-005920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 03/15/2023] Open
Abstract
Although immunotherapy can offer profound clinical benefit for patients with a variety of difficult-to-treat cancers, many tumors either do not respond to upfront treatment with immune checkpoint inhibitors (ICIs) or progressive/recurrent disease occurs after an interval of initial control. Improved response rates have been demonstrated with the addition of ICIs to cytotoxic therapies, leading to approvals from the US Food and Drug Administration and regulatory agencies in other countries for ICI-chemotherapy combinations in a number of solid tumor indications, including breast, head and neck, gastric, and lung cancer. Designing trials for patients with tumors that do not respond or stop responding to treatment with immunotherapy combinations, however, is challenging without uniform definitions of resistance. Previously, the Society for Immunotherapy of Cancer (SITC) published consensus definitions for resistance to single-agent anti-programmed cell death protein 1 (PD-1). To provide guidance for clinical trial design and to support analyses of emerging molecular and cellular data surrounding mechanisms of resistance to ICI-based combinations, SITC convened a follow-up workshop in 2021 to develop consensus definitions for resistance to multiagent ICI combinations. This manuscript reports the consensus clinical definitions for combinations of ICIs and chemotherapies. Definitions for resistance to ICIs in combination with targeted therapies and with other ICIs will be published in companion volumes to this paper.
Collapse
Affiliation(s)
| | | | | | - Helen X Chen
- National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | - Ranee Mehra
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ina Rhee
- Genentech, South San Francisco, California, USA
| | - Jong Chul Park
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Hussein Tawbi
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
4
|
Lombard AP, Armstrong CM, D'Abronzo LS, Ning S, Leslie AR, Sharifi M, Lou W, Evans CP, Dall'Era M, Chen HW, Chen X, Gao AC. Olaparib-Induced Senescence Is Bypassed through G2-M Checkpoint Override in Olaparib-Resistant Prostate Cancer. Mol Cancer Ther 2022; 21:677-685. [PMID: 35086956 PMCID: PMC8983570 DOI: 10.1158/1535-7163.mct-21-0604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/08/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
PARP inhibition represents the dawn of precision medicine for treating prostate cancer. Despite this advance, questions remain regarding the use of PARP inhibitors (PARPi) for the treatment of this disease, including (i) how specifically do PARPi-sensitive tumor cells respond to treatment, and (ii) how does PARPi resistance develop? To address these questions, we characterized response to olaparib in sensitive LNCaP and C4-2B cells and developed two olaparib-resistant derivative cell line models from each, termed LN-OlapR and 2B-OlapR, respectively. OlapR cells possess distinct morphology from parental cells and display robust resistance to olaparib and other clinically relevant PARPis, including rucaparib, niraparib, and talazoparib. In LNCaP and C4-2B cells, we found that olaparib induces massive DNA damage, leading to activation of the G2-M checkpoint, activation of p53, and cell-cycle arrest. Furthermore, our data suggest that G2-M checkpoint activation leads to both cell death and senescence associated with p21 activity. In contrast, both LN-OlapR and 2B-OlapR cells do not arrest at G2-M and display a markedly blunted response to olaparib treatment. Interestingly, both OlapR cell lines harbor increased DNA damage relative to parental cells, suggesting that OlapR cells accumulate and manage persistent DNA damage during acquisition of resistance, likely through augmenting DNA repair capacity. Further impairing DNA repair through CDK1 inhibition enhances DNA damage, induces cell death, and sensitizes OlapR cells to olaparib treatment. Our data together further our understanding of PARPi treatment and provide a cellular platform system for the study of response and resistance to PARP inhibition.
Collapse
Affiliation(s)
- Alan P Lombard
- Department of Urologic Surgery, University of California, Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California
| | - Cameron M Armstrong
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Leandro S D'Abronzo
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Shu Ning
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Amy R Leslie
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Masuda Sharifi
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Wei Lou
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Christopher P Evans
- Department of Urologic Surgery, University of California, Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California
| | - Marc Dall'Era
- Department of Urologic Surgery, University of California, Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California
| | - Hong-Wu Chen
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California
- VA Northern California Health Care System, Sacramento, California
| | - Xinbin Chen
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California
- School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Allen C Gao
- Department of Urologic Surgery, University of California, Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California
- VA Northern California Health Care System, Sacramento, California
| |
Collapse
|
5
|
Endo S, Kawai M, Hoshi M, Segawa J, Fujita M, Matsukawa T, Fujimoto N, Matsunaga T, Ikari A. Targeting Nrf2-antioxidant signaling reverses acquired cabazitaxel resistance in prostate cancer cells. J Biochem 2021; 170:89-96. [PMID: 33729485 DOI: 10.1093/jb/mvab025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer is known to have a relatively good prognosis, but long-term hormone therapy can lead to castration-resistant prostate cancer (CRPC). Cabazitaxel, a second-generation taxane, has been used for the CRPC treatment, but its tolerance is an urgent problem to be solved. In this study, to elucidate the acquisition mechanism of the cabazitaxel-resistance, we established cabazitaxel-resistant prostate cancer 22Rv1 (Cab-R) cells, which exhibited approximately 7-fold higher LD50 against cabazitaxel than the parental 22Rv1 cells. Cab-R cells showed marked increases in nuclear accumulation of NF-E2 related factor 2 (Nrf2) and expression of Nrf2-inducible antioxidant enzymes compared to 22Rv1 cells, suggesting that Nrf2 signaling is homeostatically activated in Cab-R cells. The cabazitaxel sensitivity of Cab-R cells was enhanced by silencing of Nrf2, and that of 22Rv1 cells was reduced by activation of Nrf2. Halofuginone (HF) has been recently identified as a potent Nrf2 synthetic inhibitor, and its treatment of Cab-R cells not only suppressed the Nrf2 signaling by decreasing both nuclear and cytosolic Nrf2 protein levels, but also significantly augmented the cabazitaxel sensitivity. Thus, inhibition of Nrf2 signaling may be effective in overcoming the cabazitaxel resistance in prostate cancer cells.
Collapse
Affiliation(s)
- Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Mina Kawai
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Manami Hoshi
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Jin Segawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Mei Fujita
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Takuo Matsukawa
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| |
Collapse
|