1
|
Neagu AN, Whitham D, Bruno P, Morrissiey H, Darie CA, Darie CC. Omics-Based Investigations of Breast Cancer. Molecules 2023; 28:4768. [PMID: 37375323 DOI: 10.3390/molecules28124768] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer (BC) is characterized by an extensive genotypic and phenotypic heterogeneity. In-depth investigations into the molecular bases of BC phenotypes, carcinogenesis, progression, and metastasis are necessary for accurate diagnoses, prognoses, and therapy assessments in predictive, precision, and personalized oncology. This review discusses both classic as well as several novel omics fields that are involved or should be used in modern BC investigations, which may be integrated as a holistic term, onco-breastomics. Rapid and recent advances in molecular profiling strategies and analytical techniques based on high-throughput sequencing and mass spectrometry (MS) development have generated large-scale multi-omics datasets, mainly emerging from the three "big omics", based on the central dogma of molecular biology: genomics, transcriptomics, and proteomics. Metabolomics-based approaches also reflect the dynamic response of BC cells to genetic modifications. Interactomics promotes a holistic view in BC research by constructing and characterizing protein-protein interaction (PPI) networks that provide a novel hypothesis for the pathophysiological processes involved in BC progression and subtyping. The emergence of new omics- and epiomics-based multidimensional approaches provide opportunities to gain insights into BC heterogeneity and its underlying mechanisms. The three main epiomics fields (epigenomics, epitranscriptomics, and epiproteomics) are focused on the epigenetic DNA changes, RNAs modifications, and posttranslational modifications (PTMs) affecting protein functions for an in-depth understanding of cancer cell proliferation, migration, and invasion. Novel omics fields, such as epichaperomics or epimetabolomics, could investigate the modifications in the interactome induced by stressors and provide PPI changes, as well as in metabolites, as drivers of BC-causing phenotypes. Over the last years, several proteomics-derived omics, such as matrisomics, exosomics, secretomics, kinomics, phosphoproteomics, or immunomics, provided valuable data for a deep understanding of dysregulated pathways in BC cells and their tumor microenvironment (TME) or tumor immune microenvironment (TIMW). Most of these omics datasets are still assessed individually using distinct approches and do not generate the desired and expected global-integrative knowledge with applications in clinical diagnostics. However, several hyphenated omics approaches, such as proteo-genomics, proteo-transcriptomics, and phosphoproteomics-exosomics are useful for the identification of putative BC biomarkers and therapeutic targets. To develop non-invasive diagnostic tests and to discover new biomarkers for BC, classic and novel omics-based strategies allow for significant advances in blood/plasma-based omics. Salivaomics, urinomics, and milkomics appear as integrative omics that may develop a high potential for early and non-invasive diagnoses in BC. Thus, the analysis of the tumor circulome is considered a novel frontier in liquid biopsy. Omics-based investigations have applications in BC modeling, as well as accurate BC classification and subtype characterization. The future in omics-based investigations of BC may be also focused on multi-omics single-cell analyses.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Bvd, No. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Celeste A Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Costel C Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| |
Collapse
|
2
|
Wysocka M, Wysocki O, Zufferey M, Landers D, Freitas A. A systematic review of biologically-informed deep learning models for cancer: fundamental trends for encoding and interpreting oncology data. BMC Bioinformatics 2023; 24:198. [PMID: 37189058 PMCID: PMC10186658 DOI: 10.1186/s12859-023-05262-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct applications of DL will deliver models with limited transparency and explainability, which constrain their deployment in biomedical settings. METHODS This systematic review discusses DL models used to support inference in cancer biology with a particular emphasis on multi-omics analysis. It focuses on how existing models address the need for better dialogue with prior knowledge, biological plausibility and interpretability, fundamental properties in the biomedical domain. For this, we retrieved and analyzed 42 studies focusing on emerging architectural and methodological advances, the encoding of biological domain knowledge and the integration of explainability methods. RESULTS We discuss the recent evolutionary arch of DL models in the direction of integrating prior biological relational and network knowledge to support better generalisation (e.g. pathways or Protein-Protein-Interaction networks) and interpretability. This represents a fundamental functional shift towards models which can integrate mechanistic and statistical inference aspects. We introduce a concept of bio-centric interpretability and according to its taxonomy, we discuss representational methodologies for the integration of domain prior knowledge in such models. CONCLUSIONS The paper provides a critical outlook into contemporary methods for explainability and interpretability used in DL for cancer. The analysis points in the direction of a convergence between encoding prior knowledge and improved interpretability. We introduce bio-centric interpretability which is an important step towards formalisation of biological interpretability of DL models and developing methods that are less problem- or application-specific.
Collapse
Affiliation(s)
- Magdalena Wysocka
- Digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, CRUK Manchester Institute, University of Manchester, Oxford Rd, Manchester, M13 9 PL UK
- Department of Computer Science, University of Manchester, Oxford Rd, Manchester, M13 9 PL UK
| | - Oskar Wysocki
- Digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, CRUK Manchester Institute, University of Manchester, Oxford Rd, Manchester, M13 9 PL UK
- Department of Computer Science, University of Manchester, Oxford Rd, Manchester, M13 9 PL UK
- Idiap Research Institute, National University of Sciences, Rue Marconi 19, CH - 1920 Martigny, Switzerland
| | - Marie Zufferey
- Idiap Research Institute, National University of Sciences, Rue Marconi 19, CH - 1920 Martigny, Switzerland
| | - Dónal Landers
- DeLondra Oncology Ltd, 38 Carlton Avenue, Wilmslow, SK9 4EP UK
| | - André Freitas
- Digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, CRUK Manchester Institute, University of Manchester, Oxford Rd, Manchester, M13 9 PL UK
- Department of Computer Science, University of Manchester, Oxford Rd, Manchester, M13 9 PL UK
- Idiap Research Institute, National University of Sciences, Rue Marconi 19, CH - 1920 Martigny, Switzerland
| |
Collapse
|
3
|
Neagu AN, Whitham D, Seymour L, Haaker N, Pelkey I, Darie CC. Proteomics-Based Identification of Dysregulated Proteins and Biomarker Discovery in Invasive Ductal Carcinoma, the Most Common Breast Cancer Subtype. Proteomes 2023; 11:13. [PMID: 37092454 PMCID: PMC10123686 DOI: 10.3390/proteomes11020013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Invasive ductal carcinoma (IDC) is the most common histological subtype of malignant breast cancer (BC), and accounts for 70-80% of all invasive BCs. IDC demonstrates great heterogeneity in clinical and histopathological characteristics, prognoses, treatment strategies, gene expressions, and proteomic profiles. Significant proteomic determinants of the progression from intraductal pre-invasive malignant lesions of the breast, which characterize a ductal carcinoma in situ (DCIS), to IDC, are still poorly identified, validated, and clinically applied. In the era of "6P" medicine, it remains a great challenge to determine which patients should be over-treated versus which need to be actively monitored without aggressive treatment. The major difficulties for designating DCIS to IDC progression may be solved by understanding the integrated genomic, transcriptomic, and proteomic bases of invasion. In this review, we showed that multiple proteomics-based techniques, such as LC-MS/MS, MALDI-ToF MS, SELDI-ToF-MS, MALDI-ToF/ToF MS, MALDI-MSI or MasSpec Pen, applied to in-tissue, off-tissue, BC cell lines and liquid biopsies, improve the diagnosis of IDC, as well as its prognosis and treatment monitoring. Classic proteomics strategies that allow the identification of dysregulated protein expressions, biological processes, and interrelated pathway analyses based on aberrant protein-protein interaction (PPI) networks have been improved to perform non-invasive/minimally invasive biomarker detection of early-stage IDC. Thus, in modern surgical oncology, highly sensitive, rapid, and accurate MS-based detection has been coupled with "proteome point sampling" methods that allow for proteomic profiling by in vivo "proteome point characterization", or by minimal tissue removal, for ex vivo accurate differentiation and delimitation of IDC. For the detection of low-molecular-weight proteins and protein fragments in bodily fluids, LC-MS/MS and MALDI-MS techniques may be coupled to enrich and capture methods which allow for the identification of early-stage IDC protein biomarkers that were previously invisible for MS-based techniques. Moreover, the detection and characterization of protein isoforms, including posttranslational modifications of proteins (PTMs), is also essential to emphasize specific molecular mechanisms, and to assure the early-stage detection of IDC of the breast.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd. No. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Norman Haaker
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Isabella Pelkey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|
4
|
Steyaert S, Pizurica M, Nagaraj D, Khandelwal P, Hernandez-Boussard T, Gentles AJ, Gevaert O. Multimodal data fusion for cancer biomarker discovery with deep learning. NAT MACH INTELL 2023; 5:351-362. [PMID: 37693852 PMCID: PMC10484010 DOI: 10.1038/s42256-023-00633-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/17/2023] [Indexed: 09/12/2023]
Abstract
Technological advances now make it possible to study a patient from multiple angles with high-dimensional, high-throughput multi-scale biomedical data. In oncology, massive amounts of data are being generated ranging from molecular, histopathology, radiology to clinical records. The introduction of deep learning has significantly advanced the analysis of biomedical data. However, most approaches focus on single data modalities leading to slow progress in methods to integrate complementary data types. Development of effective multimodal fusion approaches is becoming increasingly important as a single modality might not be consistent and sufficient to capture the heterogeneity of complex diseases to tailor medical care and improve personalised medicine. Many initiatives now focus on integrating these disparate modalities to unravel the biological processes involved in multifactorial diseases such as cancer. However, many obstacles remain, including lack of usable data as well as methods for clinical validation and interpretation. Here, we cover these current challenges and reflect on opportunities through deep learning to tackle data sparsity and scarcity, multimodal interpretability, and standardisation of datasets.
Collapse
Affiliation(s)
- Sandra Steyaert
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University
| | - Marija Pizurica
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University
| | | | | | - Tina Hernandez-Boussard
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University
- Department of Biomedical Data Science, Stanford University
| | - Andrew J Gentles
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University
- Department of Biomedical Data Science, Stanford University
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University
- Department of Biomedical Data Science, Stanford University
| |
Collapse
|