1
|
Wang Y, Zhao W, Zhang A, Li P, Liu J, Yi H. An insight into the mechanisms of foxtail millet bran polysaccharides retarding the digestibility of millet starch by in vitro simulated digestion. Food Chem 2025; 472:142881. [PMID: 39826515 DOI: 10.1016/j.foodchem.2025.142881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/25/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
The influence of foxtail millet bran polysaccharides (MPs) on millet starch (MS) digestion was investigated in the three aspects (MPs, MP-MS gel properties, the interactions between MPs and MS). The results showed that MPs with a higher Mw (58-2552 kDa), a narrower Mw distribution (1.85-9.53) and greater digestive enzyme inhibition could rely on the stability of the MP-MS gel to affect starch digestibility. The stronger hydrogen bonding between MPs and MS was beneficial to form a stable gel network structure. Moreover, the adhesiveness, hardness, and springiness of MP-MS gel and the formation of lamellar structure reduced contact with digestive enzymes. The presence of glucose and the increase of digestive juice viscosity inhibited digestive enzymes diffusion and reduced starch digestibility. This study revealed the key factors and influence pathways in the digestion of MP-MS gel, providing new ideas for the development of low-glycemic index starch foods.
Collapse
Affiliation(s)
- Yunting Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050050, China
| | - Wei Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050050, China
| | - Aixia Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050050, China
| | - Pengliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050050, China
| | - Jingke Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050050, China.
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Lin Z, Li W, Zhang C, Zhan L, He X, Qin Y, Sun Q, Ji N. Novel one-step method to construct gellan gum-zein core-shell structured starch beads for regulating starch digestion. Food Chem 2025; 464:141621. [PMID: 39426266 DOI: 10.1016/j.foodchem.2024.141621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
A simple and efficient one-step method combining ion crosslinking and antisolvent exchange has been developed to construct gellan gum/corn starch@zein (GG/CS@Z) core-shell structured beads. This novel approach aims to reduce the digestibility and digestion rate of starch. The GG/CS@Z beads were comprehensively characterized using scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM), differential scanning calorimetry (DSC), swelling power experiments and in vitro simulated digestion tests, respectively. SEM and CLSM analyses unequivocally confirmed the successful construction of the core-shell structure in GG/CS@Z beads. The encapsulation of starch within the core-shell structure effectively restricted its swelling and gelatinization by inhibiting water contact. Notably, compared to native corn starch, the GG/CS@Z5 beads exhibited significantly enhanced contents of slowly digestible starch (SDS) and resistant starch (RS), reaching 34.07 % and 26.86 %, respectively. These findings demonstrate the potential of GG/CS@Z core-shell structured beads as functional food ingredients for individuals with cardiovascular diseases and diabetes.
Collapse
Affiliation(s)
- Zhiwei Lin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Weixian Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Chengcheng Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Linjie Zhan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Xiaoyang He
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; School of Medical, Molecular & Forensic Sciences, College of Environmental & Life Sciences, Murdoch 6150, Western Australia, Australia
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| |
Collapse
|
3
|
Stępniewska S, Salamon A, Cacak-Pietrzak G, Piecyk M, Kowalska H. The Impact of Oyster Mushrooms ( Pleurotus ostreatus) on the Baking Quality of Rye Flour and Nutrition Composition and Antioxidant Potential of Rye Bread. Foods 2025; 14:199. [PMID: 39856866 PMCID: PMC11764506 DOI: 10.3390/foods14020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
This study aimed to evaluate the use of oyster mushroom (Pleurotus ostreatus) powder (OMP) for producing rye bread. The raw materials were low-extract rye flour and OMP, which were analyzed in terms of their nutritional and health-promoting qualities. Mixtures of rye flour with OMP were prepared, replacing 5, 7.5, and 10% rye flour with OMP. The baking quality of the tested flour samples was assessed based on their water absorption, falling number, and amylograph and swelling curve tests. The laboratory baking test was carried out using the sourdough method, prepared based on LV2 starter cultures, and the bread samples were assessed in terms of their technological, sensory, and nutritional characteristics, as well as the antioxidant potential. The OMP was characterized by a high content of basic nutrition components and a higher antioxidant potential. The addition of OMP increased the nutritional value of the rye flour and its water absorption, significantly prolonged the starch gelatinization time, and increased the xylolytic activity of the flour. The OMP enhanced the bread's dietary fiber, minerals, protein, and phenolic compounds, and boosted its antioxidant potential. Also, the starch present in the bread with OMP was characterized by a higher pro-health value due to a higher share of slowly digestible starch. Incorporating 7.5% OMP into the rye bread formula positively affected the bread's sensory profile in contrast to the bread with a 10% addition of OMP.
Collapse
Affiliation(s)
- Sylwia Stępniewska
- Department of Food Technology and Assessment, Division of Fruit, Vegetable and Cereal Technology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C Street, 02-787 Warsaw, Poland;
| | - Agnieszka Salamon
- Department of Grain Processing and Bakery, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| | - Grażyna Cacak-Pietrzak
- Department of Food Technology and Assessment, Division of Fruit, Vegetable and Cereal Technology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C Street, 02-787 Warsaw, Poland;
| | - Małgorzata Piecyk
- Department of Food Technology and Assessment, Division of Food Quality Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, 159 Nowoursynowska St., 02-776 Warsaw, Poland;
| | - Hanna Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159C Nowoursynowska St., 02-776 Warsaw, Poland
| |
Collapse
|
4
|
Törős G, Béni Á, Peles F, Gulyás G, Prokisch J. Comparative Analysis of Freeze-Dried Pleurotus ostreatus Mushroom Powders on Probiotic and Harmful Bacteria and Its Bioactive Compounds. J Fungi (Basel) 2024; 11:1. [PMID: 39852421 PMCID: PMC11766104 DOI: 10.3390/jof11010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/07/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
Pleurotus ostreatus (oyster mushroom) holds excellent promise worldwide, bringing several opportunities and augmenting the tool sets used in the biotechnology field, the food industry, and medicine. Our study explores the antimicrobial and probiotic growth stimulation benefits of freeze-dried P. ostreatus powders (OMP-TF, oyster mushroom powder from the total fresh sample; OMP-CSR, oyster mushroom powder from the cooked solid residue; OMP-CL, oyster mushroom powder from the cooked liquid), focusing on their bioactive compounds and associated activities. Our research examined polysaccharide fractions-specifically total glucans and α- and β-glucans-alongside secondary metabolites, including polyphenols and flavonoids, from freeze-dried mushroom powders. Additionally, carbon nanodots (CNDs) were also characterized. The growth inhibition was tested against Escherichia coli and Staphylococcus epidermidis, while the capacity for stimulating probiotic growth was evaluated using Lactobacillus plantarum and Lactobacillus casei. Evidence indicates that OMP-CL and OMP-CSR exhibit significant antimicrobial properties against S. epidermidis Gram-positive bacteria. OMP-CL notably promoted the growth of L. casei. OMP-CL, containing the most significant number of CNDs, has shown to be a valuable source for gut microbiota modulation, with its antimicrobial and probiotic-stimulating efficacy. However, further in vitro and in vivo studies should be performed to explore CNDs and their behavior in different biological systems.
Collapse
Affiliation(s)
- Gréta Törős
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (G.G.); (J.P.)
- Doctoral School of Animal Husbandry, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| | - Áron Béni
- Institute of Agricultural Chemistry and Soil Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary;
| | - Ferenc Peles
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary;
| | - Gabriella Gulyás
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (G.G.); (J.P.)
| | - József Prokisch
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (G.G.); (J.P.)
| |
Collapse
|
5
|
Luan Q, Qiao R, Wu X, Shan J, Song C, Zhao X, Zhao Y. Plant-Derived Chinese Herbal Hydrogel Microneedle Patches for Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404850. [PMID: 39073298 DOI: 10.1002/smll.202404850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Several natural Chinese herbal medicines have demonstrated considerable potential in facilitating wound healing, while the primary concern remains centered around optimizing formulation and structure to maximize their efficacy. To address this, a natural microneedles drug delivery system is proposed that harnesses gelatinized starch and key Chinese herbal ingredients-aloe vera and berberine. After gelatinized and aged in a well-designed mold, the starch-based microneedles are fabricated with suitable mechanical strength to load components. The resulting Chinese herbal hydrogel microneedles, enriched with integrated berberine and aloe, exhibit antibacterial, anti-inflammatory, and fibroblast growth-promoting properties, thereby facilitating wound healing in the whole process. In vivo experimental results underscore the notable achievements of the microneedles in early-stage antibacterial effects and subsequent tissue reconstruction, contributing significantly to the overall wound healing process. These results emphasize the advantageous combination of traditional Chinese medicine with microneedles, presenting a novel strategy for wound repair and opening new avenues for the application of traditional Chinese medicine.
Collapse
Affiliation(s)
- Qichen Luan
- Department of Andrology, Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210096, China
| | - Ruochen Qiao
- Department of Andrology, Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210096, China
| | - Xiangyi Wu
- Department of Andrology, Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210096, China
| | - Jingyang Shan
- Department of Andrology, Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210096, China
| | - Chuanhui Song
- Department of Andrology, Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210096, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, 210008, China
| | - Xiaozhi Zhao
- Department of Andrology, Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Andrology, Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210096, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
6
|
Wen L, Liu H, Zheng Y, Ou Y, Guo Z, Zeng H, Zheng B. Dietary fiber-rich Lentinula edodes stems influence the structure and in vitro digestibility of low-moisture extruded maize starches. Int J Biol Macromol 2024; 279:135115. [PMID: 39197607 DOI: 10.1016/j.ijbiomac.2024.135115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
Low-moisture extrusion (LME) can be used to improve the utilization of dietary fiber-rich Lentinula edodes stems (LES). The incorporation of dietary fiber can affect heat-induced interactions of starch molecules, which are critical for modifying starch characteristics via LME. In this work, a blend of LES and maize starch was extruded into a product at low moisture (30 %, w/v). The structure, physicochemical properties, and in vitro digestibility of extruded maize starches were investigated at different LES levels. The results showed that low levels (<7 %) of LES increased the crystallinity of LME-produced starch, while high levels (>7 %) did not. Because of the LES's soluble to insoluble dietary fiber ratios, the increased crystallinity of LES-added starch led to greater molecular ordering and the formation of an elastic gel after LME. At a suitable LES level (~3 %), highly crystallized starches were resistant to enzymolysis and had a high proportion of resistant starch. The obtained findings would contribute to a better understanding of how dietary fiber-rich LES affects starch extrusion and provide an alternative use for boosting the value of LES by-products.
Collapse
Affiliation(s)
- Lihua Wen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Huifang Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Yixin Zheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujia Ou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China.
| |
Collapse
|
7
|
Hong J, Chen P, Liang X, Liu C, Guan E, Omer SHS, Zheng X. Insight into the mechanism of digestibility inhibition by interaction between corn starch with different gelatinization degree and water extractable arabinoxylan. Int J Biol Macromol 2024; 276:133950. [PMID: 39029848 DOI: 10.1016/j.ijbiomac.2024.133950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
On the basis of revealing the interaction mechanism between corn starch (CS) and water-extractable arabinoxylan (WEAX) with high/low molecular weight (H-WEAX, L-WEAX), the degree of gelatinization (DG) on structural behaviors and in vitro digestibility of CS-WEAX complexes (CS/H, CS/L) was evaluated. With the increased DG from 50 % to 95 %, the water adsorption capacity of CS/L was increased 64 %, 58 %, 47 %, which were higher than that of CS/H (39 %, 54 %, 33 %). The gelatinization of starch was inhibited by WEAX, resulting in the enhancement of crystallinity, short-range ordered structure and molecular size of CS-WEAX complexes. Stronger interaction was detected in CS/L than with CS/H as proved by the increased hydrogen bonds and electrostatic force. Complexes exhibited higher resistant starch content (RS) at diverse DG, especially for CS/L. Notability, RS content of samples with 50 % DG were increased from 27.72 % to 32.89 % (CS/H), 36.96 % (CS/L). Except for the reduction of gelatinization degree by adding WEAX, the other possible mechanisms of retarding digestibility were explained as the small steric hindrance of L-WEAX promoted encapsulation of starch granules, limiting enzyme accessibility. Additionally, the fragmentation of CS granules with high DG promoted the movement of H-WEAX, reducing the difference in digestibility compared to CS/L.
Collapse
Affiliation(s)
- Jing Hong
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Peixia Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaohui Liang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chong Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Erqi Guan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Saeed Hamid Saeed Omer
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueling Zheng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
8
|
Zhang S, Liu Y, Sun T, Liu H, Wang D. The Effects of Tremella fuciformis Polysaccharide on the Physicochemical, Multiscale Structure and Digestive Properties of Cyperus esculentus Starch. Foods 2024; 13:1425. [PMID: 38731796 PMCID: PMC11083195 DOI: 10.3390/foods13091425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, we have investigated the effects of Tremella fuciformis polysaccharide (TP) on the pasting, rheological, structural and in vitro digestive properties of Cyperus esculentus starch (CS). The results showed that the addition of TP significantly changed the pasting characteristics of CS, increased the pasting temperature and pasting viscosity, inhibited pasting, reduced the exudation of straight-chain starch and was positively correlated with the amount of TP added. The addition of the appropriate amount of TP could increase its apparent viscosity and enhance its viscoelasticity. The composite system of CS/TP exhibited higher short-range ordered structure and solid dense structure, which protected the crystal structure of CS, but was related to the amount of TP added. In addition, the introduction of TP not only decreased the in vitro digestion rate of CS and increased the content of slow-digestible starch (SDS) and resistant starch (RS), but also reduced the degree of digestion. Correlation studies established that TP could improve the viscoelasticity, relative crystallinity and short-range order of the CS/TP composite gel, maintain the integrity of the starch granule and crystalline structure, reduce the degree of starch pasting and strengthen the gel network structure of CS, which could help to lower the digestibility of CS.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.Z.); (Y.L.); (T.S.); (H.L.)
- Engineering Research Center of Grain Deep-Processing and High-Effeciency Utilization of Jilin Province, Changchun 130118, China
| | - Yingxu Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.Z.); (Y.L.); (T.S.); (H.L.)
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Tong Sun
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.Z.); (Y.L.); (T.S.); (H.L.)
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
- Key Laboratory of Technological Innovations for Grain Deep-Processing and High-Effeciency Utilization of By-Products of Jilin Province, Changchun 130118, China
| | - Hongcheng Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.Z.); (Y.L.); (T.S.); (H.L.)
- Engineering Research Center of Grain Deep-Processing and High-Effeciency Utilization of Jilin Province, Changchun 130118, China
| | - Dawei Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.Z.); (Y.L.); (T.S.); (H.L.)
- Engineering Research Center of Grain Deep-Processing and High-Effeciency Utilization of Jilin Province, Changchun 130118, China
| |
Collapse
|
9
|
Wang Z, Zhang S, Wang H, Huang J, Wang L. Effect of synergistic fermentation of Saccharomyces cerevisiae and Lactobacillus plantarum on thermal properties of hyaluronic acid-wheat starch system. Int J Biol Macromol 2024; 267:131542. [PMID: 38608973 DOI: 10.1016/j.ijbiomac.2024.131542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Hyaluronic acid (HA), as a multifunctional hydrophilic polysaccharide, is potentially beneficial in improving the thermal stability of fermented modified starches, but relevant insights at the molecular level are lacking. The aim of this study was to investigate the effect of different levels (0 %, 3 %, 6 %, 9 %, 12 % and 15 %) of HA on the structural, thermal and pasting properties of wheat starch co-fermented with Saccharomyces cerevisiae and Lactobacillus plantarum. We found that the addition of HA increased the median particle size of fermented starch granules from 16.387 to 17.070 μm. Meanwhile, the crystallinity of fermented starch was negatively correlated with the HA content, decreasing from 14.70 % to 12.80 % (p < 0.05). Fourier transform infrared spectroscopy results confirmed that HA interacted with starch granules and water molecules mainly through hydrogen bonding. Thermal analyses showed that the thermal peak of the composite correlated with the HA concentration, reaching a maximum of 73.17 °C at 12 % HA. In addition, HA increases the pasting temperature, reduces the peak, breakdown and setback viscosities of starch. This study demonstrates the role of HA in improving the thermal stability of fermented starch, providing new insights for traditional fermented food research and the application of HA in food processing.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Sijie Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Huiping Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Jihong Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| | - Luyang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| |
Collapse
|
10
|
Zhan L, Lin Z, Li W, Qin Y, Sun Q, Ji N, Xie F. The Construction of Sodium Alginate/Carboxymethyl Chitosan Microcapsules as the Physical Barrier to Reduce Corn Starch Digestion. Foods 2024; 13:1355. [PMID: 38731726 PMCID: PMC11083366 DOI: 10.3390/foods13091355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
To enhance the resistant starch (RS) content of corn starch, in this work, carboxymethyl chitosan/corn starch/sodium alginate microcapsules (CMCS/CS/SA) with varying concentrations of SA in a citric acid (CA) solution were designed. As the SA concentration increased from 0.5% to 2%, the swelling of the CMCS/CS/SA microcapsule decreased from 15.28 ± 0.21 g/g to 3.76 ± 0.66 g/g at 95 °C. Comparatively, the onset, peak, and conclusion temperatures (To, Tp, and Tc) of CMCS/CS/SA microcapsules were higher than those of unencapsulated CS, indicating that the dense network structure of microcapsules reduced the contact area between starch granules and water, thereby improving thermal stability. With increasing SA concentration, the intact and dense network of CMCS/CS/SA microcapsules remained less damaged after 120 min of digestion, suggesting that the microcapsules with a high SA concentration provided better protection to starch, thereby reducing amylase digestibility. Moreover, as the SA concentration increased from 0.5% to 2%, the RS content of the microcapsules during in vitro digestion rose from 42.37 ± 0.07% to 57.65 ± 0.45%, attributed to the blocking effect of the microcapsule shell on amylase activity. This study offers innovative insights and strategies to develop functional starch with glycemic control properties, holding significant scientific and practical value in preventing diseases associated with abnormal glucose metabolism.
Collapse
Affiliation(s)
- Linjie Zhan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (L.Z.); (Z.L.); (W.L.); (Y.Q.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Zhiwei Lin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (L.Z.); (Z.L.); (W.L.); (Y.Q.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Weixian Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (L.Z.); (Z.L.); (W.L.); (Y.Q.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (L.Z.); (Z.L.); (W.L.); (Y.Q.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (L.Z.); (Z.L.); (W.L.); (Y.Q.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (L.Z.); (Z.L.); (W.L.); (Y.Q.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK;
| |
Collapse
|
11
|
Qiu J, Zheng P, Dai W, Zheng Z, Lin X, Hu J, Zeng S, Lin S. Steam Explosion-Assisted Extraction of Polysaccharides from Pleurotus eryngii and Its Influence on Structural Characteristics and Antioxidant Activity. Foods 2024; 13:1229. [PMID: 38672901 PMCID: PMC11049414 DOI: 10.3390/foods13081229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Pleurotus eryngii (PE) has been sought after for its various health benefits and high content of phenolic compounds. This study explored the feasibility of steam explosion (SE)-assisted extraction of polysaccharides with high antioxidant capacities from PE. An orthogonal experimental design (OED) was used to optimize the SE-assisted extraction of PE. The influence of the optimized SE-assisted extraction on the physicochemical properties of PE polysaccharides was determined by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), monosaccharide compositional analysis and antioxidant capacity assays. Under optimal SE conditions, SE-assisted extraction increased the polysaccharide yield by 138% compared to extraction without SE-assistance. In addition, SEM demonstrated that SE-assisted extraction markedly altered the spatial structure of Pleurotus eryngii polysaccharides (PEP), and monosaccharide compositional analysis revealed that this pretreatment significantly increased the proportions of some monosaccharides, such as glucose, rhamnose and arabinose, in the isolated PEP. FTIR spectra indicated no change in the major chemical functional groups of PEP. PEP extracted by SE-assisted extraction had significantly increased free radical scavenging and antioxidant capacities. In conclusion, SE-assisted extraction appears to be a novel polysaccharide extraction technology, which markedly increases extraction yields and efficiency and can increase the biological activity of polysaccharide extracts.
Collapse
Affiliation(s)
- Jianqing Qiu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Q.); (P.Z.); (W.D.); (J.H.); (S.Z.)
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing 350300, China
| | - Peiying Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Q.); (P.Z.); (W.D.); (J.H.); (S.Z.)
| | - Wanzhen Dai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Q.); (P.Z.); (W.D.); (J.H.); (S.Z.)
| | - Zhijun Zheng
- Fujian Subtropical Fruit Beverage Engineering Research Center, Zhangzhou 363000, China; (Z.Z.); (X.L.)
| | - Xiaohui Lin
- Fujian Subtropical Fruit Beverage Engineering Research Center, Zhangzhou 363000, China; (Z.Z.); (X.L.)
| | - Jiamiao Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Q.); (P.Z.); (W.D.); (J.H.); (S.Z.)
- College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Q.); (P.Z.); (W.D.); (J.H.); (S.Z.)
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Q.); (P.Z.); (W.D.); (J.H.); (S.Z.)
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| |
Collapse
|
12
|
Zheng J, Wang N, Yang J, You Y, Zhang F, Kan J, Wu L. New insights into the interaction between bamboo shoot polysaccharides and lotus root starch during gelatinization, retrogradation, and digestion of starch. Int J Biol Macromol 2024; 254:127877. [PMID: 37926313 DOI: 10.1016/j.ijbiomac.2023.127877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
In this study, the interaction between bamboo shoot polysaccharides (BSP) and lotus root starch (LS) during gelatinization, retrogradation, and digestion of starch was investigated. The addition of BSP inhibited the gelatinization of LS and decreased the peak viscosity, valley viscosity, and final viscosity. Amylose leaching initially increased and then decreased with the increase in BSP addition. The apparent viscosity and viscoelasticity of LS decreased with the increase in BSP addition. Moreover, 3 % BSP increased the hardness and cohesiveness of LS gel, whereas 6 %-15 % BSP decreased them. In addition, 3 %-6 % BSP promoted the uniform distribution of water molecules in the starch paste, whereas the addition of 12 % and 15 % BSP resulted in the inhomogeneous distribution of the water. The retrogradation degree of LS gel gradually increased with the increase in BSP addition from 3 % to 6 %, whereas 9 %-15 % BSP restricted the short-term and long-term retrogradation of LS. After 12 % BSP was added, the RDS content reduced by 11.6 %, the RS content significantly increased by 75 %, and the digestibility of starch decreased. This work revealed the interaction between BSP and LS during starch gelatinization, retrogradation, and digestion to improve the physicochemical properties and digestive characteristics of LS.
Collapse
Affiliation(s)
- Jiong Zheng
- College of Food Science, Southwest University, Chongqing 400715, China; Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| | - Nan Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jinlai Yang
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China
| | - Yuming You
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 400715, China
| | - Fusheng Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Liangru Wu
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China.
| |
Collapse
|
13
|
Feng H, Luo L, Wang L, Ding Y, Sun L, Zhuang Y. Effects of Tremella aurantialba on physical properties, in vitro glucose release, digesta rheology, and microstructure of bread. J Food Sci 2023; 88:4853-4866. [PMID: 37872789 DOI: 10.1111/1750-3841.16795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
In this study, the functional properties of a mixture consisting of Tremella aurantialba powder (TAP) and wheat flour were investigated. Further, the effects of adding 0%, 1%, 3%, 5%, and 10% TAP on the physical properties of bread, as well as its glucose release, microstructure, and rheology during in vitro simulated digestion were studied. The water-holding, oil-holding, and swelling capacities of wheat flour were significantly enhanced (p < 0.05) with the increase of TAP. The addition of TAP increased the hardness, chewiness, gumminess, and moisture content and darkened the color of the bread. Sensory evaluation showed that adding the 3% of TAP could produce bread that satisfies the requirements of consumers. Furthermore, adding TAP could inhibit the release of glucose from the digesta into the dialysis solution, especially the addition of 10% TAP reduced the release of bread glucose by 23.81%. This phenomenon might be related to the increased viscosity of the digesta and the smooth physical barrier on the surface of starch granules during simulated in vitro digestion of bread. Therefore, as a natural food, T. aurantialba has great potential in improving the functional properties of bread and the application of starch matrix products.
Collapse
Affiliation(s)
- Hui Feng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lifei Luo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Liyan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
14
|
Wong MKL, Ku PKM, Tong MCF, Lee KYS, Fong R. Endoscopic and observational findings of swallowing of traditional and molded puree in healthy individuals. Dysphagia 2023; 38:1363-1370. [PMID: 36869928 DOI: 10.1007/s00455-023-10565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023]
Abstract
Puree is commonly prescribed for patients with mastication and bolus formation difficulties, but its appearance might negatively impact appetite and intake. Molded puree is marketed to be an alternative to traditional puree, but the process of molding puree could alter the properties of the food significantly and lead to different swallowing physiology as compared to puree. The current study investigated the differences between traditional and molded puree in terms of swallowing physiology and perception in healthy individuals. Thirty two participants were included. Two outcomes were used to quantify the oral preparatory and oral phase. Fibreoptic endoscopic evaluation of swallowing was used to assess the pharyngeal phase as it could retain the purees in their original form. Six outcomes were collected. Perceptual rating of the purees were provided by participants in six domains. Molded puree required significantly more masticatory cycles (p < 0.001) and longer time for ingestion (p < 0.001). Molded puree had longer swallow reaction time (p = 0.001) and more inferior site of swallow initiation (p = 0.007) compared with traditional puree. Participants' satisfaction with the appearance, texture and overall of molded puree was significantly greater. Molded puree was perceived to be more difficult to chew and swallow. This study established that the two types of puree were different in various aspects. The study also provided important clinical implications regarding the use of molded puree as a form of texture modified diet (TMD) in patients with dysphagia. The results could serve as the foundation of larger cohort studies on the effect of various TMDs on patients with dysphagia.
Collapse
Affiliation(s)
- Meko Ka Lam Wong
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Peter Ka Ming Ku
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Ear, Nose & Throat, United Christian Hospital, Hong Kong, China
| | - Michael Chi Fai Tong
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Human Communicative Research, The Chinese University of Hong Kong, Hong Kong, China
| | - Kathy Yuet Sheung Lee
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Human Communicative Research, The Chinese University of Hong Kong, Hong Kong, China
| | - Raymond Fong
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Human Communicative Research, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Lam ILJ, Mohd Affandy MA, 'Aqilah NMN, Vonnie JM, Felicia WXL, Rovina K. Physicochemical Characterization and Antimicrobial Analysis of Vegetal Chitosan Extracted from Distinct Forest Fungi Species. Polymers (Basel) 2023; 15:polym15102328. [PMID: 37242902 DOI: 10.3390/polym15102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/28/2023] Open
Abstract
The main goal of this investigation is to conduct a thorough analysis of the physical, chemical, and morphological characteristics of chitosan derived from various forest fungi. Additionally, the study aims to determine the effectiveness of this vegetal chitosan as an antimicrobial agent. In this study, Auricularia auricula-judae, Hericium erinaceus, Pleurotus ostreatus, Tremella fuciformis, and Lentinula edodes were examined. The fungi samples were subjected to a series of rigorous chemical extraction procedures, including demineralization, deproteinization, discoloration, and deacetylation. Subsequently, the chitosan samples were subjected to a comprehensive physicochemical characterization analysis, encompassing Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), degree of deacetylation determination, ash content determination, moisture content determination, and solubility determination. To evaluate the antimicrobial efficacy of the vegetal chitosan samples, two different sampling parameters were employed, namely human hand and banana, to assess their effectiveness in inhibiting microbial growth. Notably, the percentage of chitin and chitosan varied significantly among the distinct fungal species examined. Moreover, EDX spectroscopy confirmed the extraction of chitosan from H. erinaceus, L. edodes, P. ostreatus, and T. fuciformis. The FTIR spectra of all samples revealed a similar absorbance pattern, albeit with varying peak intensities. Furthermore, the XRD patterns for each sample were nearly identical, with the exception of the A. auricula-judae sample, which exhibited sharp peaks at ~37° and ~51°, while the crystallinity index of this same sample was approximately 17% lower than the others. The moisture content results indicated that the L. edodes sample was the least stable, while the P. ostreatus sample was the most stable, in terms of degradation rate. Similarly, the solubility of the samples showed substantial variation among each species, with the H. erinaceus sample displaying the highest solubility among the rest. Lastly, the antimicrobial activity of the chitosan solutions exhibited different efficacies in inhibiting microbial growth of skin microflora and microbes found on the peel of Musa acuminata × balbisiana.
Collapse
Affiliation(s)
- Iversen Luk Jun Lam
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | | | - Nasir Md Nur 'Aqilah
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Joseph Merillyn Vonnie
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Wen Xia Ling Felicia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Kobun Rovina
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
16
|
Guo W, Tang X, Cui S, Zhang Q, Zhao J, Mao B, Zhang H. Recent advance in quality preservation of non-thermal preservation technology of fresh mushroom: a review. Crit Rev Food Sci Nutr 2023; 64:7878-7894. [PMID: 36971127 DOI: 10.1080/10408398.2023.2193636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Fresh mushrooms have a long history of cultivation and consumption, but high postharvest losses are a concern in the commercial production of mushrooms worldwide. Thermal dehydration is widely used in the preservation of commercial mushrooms, but the flavor and taste of mushrooms are significantly altered after dehydration. Non-thermal preservation technology, which effectively maintains the characteristics of mushrooms, is a viable alternative to thermal dehydration. The objective of this review was to critically assess the factors affecting fresh mushroom quality after preservation is remarkable, with the ultimate goal of developing and promoting non-thermal preservation technology for preserving fresh mushroom quality, effectively extending the shelf life of fresh mushrooms. The factors influencing the quality degradation process of fresh mushrooms discussed herein include the internal factors associated with the mushroom itself and the external factors associated with the storage environment. We present a comprehensive discussion of the effects of different non-thermal preservation technologies on the quality and shelf life of fresh mushrooms. To prevent quality loss and extend the shelf life after postharvest, hybrid methods, such as physical or chemical techniques combined with chemical techniques, and novel nonthermal technologies are highly recommended.
Collapse
Affiliation(s)
- Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
17
|
Guo YX, Yang YR, Qin Y, Guan TK, Yang QZ, Wang YX, Tang S, Zhang GQ, Chen QJ. Nutritional qualities and antioxidant activity of Pleurotus floridanus grown on composted peach sawdust substrate with different composting time. Biotechnol Appl Biochem 2023; 70:210-220. [PMID: 35398919 DOI: 10.1002/bab.2344] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/25/2022] [Indexed: 11/10/2022]
Abstract
Recently, composting cultivation method is widely used in oyster mushroom production. In this study, we focused on the effects of composting processes on nutritional qualities and antioxidant activity of Pleurotus floridanus mushroom fruiting bodies. Three treatments of different composting time (2, 4, and 5 days) were performed with an atmospheric sterilization treatment as the control. The results showed that the pH value, total carbon content, and total nitrogen content of substrate were critical parameters which would significantly affect mushroom qualities and bioactivities. Fruiting bodies of the control demonstrated significantly higher crude protein content, total amino acid content, and essential amino acid content than that of composting treatments. Moreover, fruiting bodies of treatment D4 and D5 manifested significantly higher crude polysaccharide contents. Crude polysaccharide of treatment D4 represented the highest scavenging ability toward both radical 3-ethylbenzthiazoline-6-sulfonic acid (ABTS·+ ) and Hydroxyl radical (OH·). It suggests that composting processes is suitable for oyster mushroom cultivation based on nutritional and antioxidant qualities of fruiting bodies.
Collapse
Affiliation(s)
- Yu-Xin Guo
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ya-Ru Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yong Qin
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Ti-Kun Guan
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Qi-Zhi Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yue-Xing Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Shi Tang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Guo-Qing Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Qing-Jun Chen
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
18
|
Tu J, Adhikari B, Brennan MA, Cheng P, Bai W, Brennan CS. Interactions between sorghum starch and mushroom polysaccharides and their effects on starch gelatinization and digestion. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Jung DY, Lee HJ, Shin DJ, Kim CH, Jo C. Mechanism of improving emulsion stability of emulsion-type sausage with oyster mushroom (Pleurotus ostreatus) powder as a phosphate replacement. Meat Sci 2022; 194:108993. [PMID: 36174485 DOI: 10.1016/j.meatsci.2022.108993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/28/2022]
Abstract
This research evaluated the potentiality of oyster mushroom powder (OMP) as a phosphate alternative by improving emulsion stability of emulsion-type sausage. Sausage without phosphate (NC), with 0.2% sodium triphosphate (PC), and with 1 and 2% OMP (M1 and M2) were prepared. The OMP addition improved the physicochemical properties of sausage, effectively prevented lipid oxidation, and delayed the growth of aerobic bacteria during 28 days of cold storage compared to NC. The M1 and M2 improved the emulsion stability similar to PC. M2 had the highest water holding capacity and apparent viscosity and the lowest cooking loss (P < 0.05). The addition of OMP resulted in different textural characteristics from that of phosphate due to the formation of emulsion structures randomly entrapped by filament-like components, which were derived from polysaccharides or the conjugates between polysaccharides and proteins. According to the results of this study, emulsion stability promoted by OMP was mainly due to the polysaccharides, which are involved in enhancing viscosity and steric hindrance.
Collapse
Affiliation(s)
- Doo Yeon Jung
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Jung Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Jin Shin
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Department of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Cho Hyun Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Institute of Green Bio Science and Technology, Seoul National University, Pyungchang 25354, Republic of Korea.
| |
Collapse
|
20
|
Tang YF, Zhan WX, Li MZ, Wang L, Wei JY, Deng JL, Chen ZX. Glutathione Inhibited Starch Digestion: Structural and Kinetic analysis of Substrate and α-Amylase. Food Chem 2022; 405:134979. [DOI: 10.1016/j.foodchem.2022.134979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
21
|
Liu Y, Zhang H, Brennan M, Brennan C, Qin Y, Cheng G, Liu Y. Physical, chemical, sensorial properties and in vitro digestibility of wheat bread enriched with yunnan commercial and wild edible mushrooms. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
22
|
Recent progress in understanding starch gelatinization - An important property determining food quality. Carbohydr Polym 2022; 293:119735. [DOI: 10.1016/j.carbpol.2022.119735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/04/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
|
23
|
Research progress of Lycium barbarum L. as functional food: phytochemical composition and health benefits. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Shashikant M, Bains A, Chawla P, Sharma M, Kaushik R, Kandi S, Kuhad RC. In-vitro antimicrobial and anti-inflammatory activity of modified solvent evaporated ethanolic extract of Calocybe indica: GCMS and HPLC characterization. Int J Food Microbiol 2022; 376:109741. [DOI: 10.1016/j.ijfoodmicro.2022.109741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/01/2022]
|
25
|
Characterization and in vitro digestibility of potato starch encapsulated in calcium alginate beads. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Fu Y, Jiang E, Yao Y. New Techniques in Structural Tailoring of Starch Functionality. Annu Rev Food Sci Technol 2022; 13:117-143. [PMID: 35080964 DOI: 10.1146/annurev-food-102821-035457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inherent characteristics of native starches such as water insolubility, retrogradation and syneresis, and instability in harsh processing conditions (e.g., high temperature and shearing, low pH) limit their industrial applications. As starch properties mainly depend on starch composition and structure, structural tailoring of starch has been important for overcoming functional limitations and expanding starch applications in different fields. In this review, we first introduce the basics of starch structure, properties, and functionalities and then describe the interactions of starch with lipids, polysaccharides, and phenolics. After reviewing genetic, chemical, and enzymatic modifications of starch, we describe current progress in the areas of porous starch and starch-based nanoparticles. New techniques, such as using the CRISPR-Cas9 technique to tailor starch structures and using an emulsion-assisted approach in forming functional starch nanoparticles, are only feasible when they are established based on fundamental knowledge of starch. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yezhi Fu
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania
| | - Evelyn Jiang
- Department of Food Science, Purdue University, West Lafayette, Indiana; .,Lincolnshire, Illinois
| | - Yuan Yao
- Department of Food Science, Purdue University, West Lafayette, Indiana;
| |
Collapse
|
27
|
Nutritious mushroom protein crisp – healthy alternative to starchy snack. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00077-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
Global salty snacks category had reached USD 137 billion in sales in 2018. Due to growing health concerns and awareness, consumers are looking for healthy snack choices by avoiding ingredients such as fat, sugar, cholesterol, and sodium and selecting baked and salt free multigrain chips. A sizable number of consumers are concerned about snack nutrition and look for quality ingredients and minimally processed foods called as “Good Health Snack (GHS)”. In this work, we present the development of method of producing and testing mushrooms protein crisps (MPC), a healthy alternative to conventional starchy snacks that are rich in protein, nutraceutical compounds, minerals, vitamin, dietary fiber, and immunity inducing beta-glucans. The methods of producing MPC with different seasoning and hydrolyzed protein, calorie, nutritional and chemical composition, consumer response, shelf life after packing and market analysis are described. These systematic studies will help to market potential of this product which is a healthy alternative to other calorie rich snacks sold in the market benefiting the consumers.
Graphical abstract
Collapse
|
28
|
A Systematic Comparison of the Intrinsic Properties of Wheat and Oat Bran Fractions and Their Effects on Dough and Bread Properties: Elucidation of Chemical Mechanisms, Water Binding, and Steric Hindrance. Foods 2021; 10:foods10102311. [PMID: 34681360 PMCID: PMC8534771 DOI: 10.3390/foods10102311] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed at elucidating the contribution of chemical interactions, water binding, and steric hindrance on the effect of wheat and oat brans and of their fractions, i.e., soluble and insoluble, on dough and bread properties. For such purpose, an inert filler, i.e., glass beads of comparable particle size and with no water binding capacity and moisture sorption properties, was also studied. The glass beads provided breads most similar to the control, indicating the limited role of steric hindrance. Brans and bran fractions showed distinct compositional and physical properties. The soluble fraction from oat bran, rich in β-glucan, was less hygroscopic than the wheat counterpart and could bind more water, resulting in larger detrimental effects on bread quality. The β-glucan content showed a prevalent role in affecting gluten development, the thermo-setting behaviour of the dough, and crumb texture, i.e., cohesiveness and resilience. Overall, the comparison between the two brans and their fractions indicated that the interplay between water binding, mainly provided by the insoluble fraction, and the plasticizing properties of the soluble bran fraction controlled the effects on bread volume and texture. From a compositional standpoint, β-glucan content was a determining factor that discriminated the effects of wheat and oat brans.
Collapse
|
29
|
Tu J, Brennan MA, Wu G, Bai W, Cheng P, Tian B, Brennan CS. Delivery of Phenolic Compounds, Peptides and β-Glucan to the Gastrointestinal Tract by Incorporating Dietary Fibre-Rich Mushrooms into Sorghum Biscuits. Foods 2021; 10:1812. [PMID: 34441591 PMCID: PMC8391148 DOI: 10.3390/foods10081812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 01/08/2023] Open
Abstract
Sorghum biscuits were enriched with mushroom powders (Lentinula edodes, Auricularia auricula and Tremella fuciformis) at 5%, 10% and 15% substitution levels. An in vitro gastrointestinal digestion was used to evaluate the effect of this enrichment on the phenolic content and soluble peptide content as well as antioxidant activities of the gastric or intestinal supernatants (bio-accessible fractions), and the remaining portions of phenolic compounds, antioxidants and β-glucan in the undigested residue (non-digestible fraction). The phenolic content of the gastric and intestinal supernatants obtained from digested mushroom-enriched biscuits was found to be higher than that of control biscuit, and the phenolic content was positively correlated to the antioxidant activities in each fraction (p < 0.001). L. edodes and T. fuciformis enrichment increased the soluble protein content (small peptide) of sorghum biscuits after in vitro digestion. All mushroom enrichment increased the total phenolic content and β-glucan content of the undigested residue and they were positively correlated (p < 0.001). The insoluble dietary fibre of biscuits was positively correlated with β-glucan content (p < 0.001) of undigested residue. These findings suggested that enriching food with mushroom derived dietary fibre increases the bioavailability of the non-digestible β-glucan and phenolic compounds.
Collapse
Affiliation(s)
- Juncai Tu
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch 7647, New Zealand; (J.T.); (M.A.B.); (G.W.); (B.T.)
- Riddet Institute, Palmerston North 4474, New Zealand
| | - Margaret Anne Brennan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch 7647, New Zealand; (J.T.); (M.A.B.); (G.W.); (B.T.)
| | - Gang Wu
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch 7647, New Zealand; (J.T.); (M.A.B.); (G.W.); (B.T.)
- Riddet Institute, Palmerston North 4474, New Zealand
| | - Weidong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (W.B.); (P.C.)
| | - Ping Cheng
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (W.B.); (P.C.)
| | - Bin Tian
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch 7647, New Zealand; (J.T.); (M.A.B.); (G.W.); (B.T.)
| | - Charles Stephen Brennan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch 7647, New Zealand; (J.T.); (M.A.B.); (G.W.); (B.T.)
- Riddet Institute, Palmerston North 4474, New Zealand
- School of Science, RMIT University, GP.O. Box 2474, Melbourne, VIC 3001, Australia
| |
Collapse
|
30
|
Vamanu E, Dinu LD, Pelinescu DR, Gatea F. Therapeutic Properties of Edible Mushrooms and Herbal Teas in Gut Microbiota Modulation. Microorganisms 2021; 9:microorganisms9061262. [PMID: 34200833 PMCID: PMC8230450 DOI: 10.3390/microorganisms9061262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Edible mushrooms are functional foods and valuable but less exploited sources of biologically active compounds. Herbal teas are a range of products widely used due to the therapeutic properties that have been demonstrated by traditional medicine and a supplement in conventional therapies. Their interaction with the human microbiota is an aspect that must be researched, the therapeutic properties depending on the interaction with the microbiota and the consequent fermentative activity. Modulation processes result from the activity of, for example, phenolic acids, which are a major component and which have already demonstrated activity in combating oxidative stress. The aim of this mini-review is to highlight the essential aspects of modulating the microbiota using edible mushrooms and herbal teas. Although the phenolic pattern is different for edible mushrooms and herbal teas, certain non-phenolic compounds (polysaccharides and/or caffeine) are important in alleviating chronic diseases. These specific functional compounds have modulatory properties against oxidative stress, demonstrating health-beneficial effects in vitro and/or In vivo. Moreover, recent advances in improving human health via gut microbiota are presented. Plant-derived miRNAs from mushrooms and herbal teas were highlighted as a potential strategy for new therapeutic effects.
Collapse
Affiliation(s)
- Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 1 District, 011464 Bucharest, Romania;
- Correspondence: ; Tel.: +40-742218240
| | - Laura Dorina Dinu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 1 District, 011464 Bucharest, Romania;
| | - Diana Roxana Pelinescu
- Department of Genetics, University of Bucharest, 36-46 Bd. M. Kogalniceanu, 5th District, 050107 Bucharest, Romania;
| | - Florentina Gatea
- Centre of Bioanalysis, National Institute for Biological Sciences, 296 Spl. Independentei, 060031 Bucharest, Romania;
| |
Collapse
|