1
|
Togoli I, Marlair C, Collignon O, Arrighi R, Crollen V. Tactile numerosity is coded in external space. Cortex 2020; 134:43-51. [PMID: 33249299 DOI: 10.1016/j.cortex.2020.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/13/2020] [Accepted: 10/14/2020] [Indexed: 11/18/2022]
Abstract
Humans, and several non-human species, possess the ability to make approximate but reliable estimates of the number of objects around them. Alike other perceptual features, numerosity perception is susceptible to adaptation: exposure to a high number of items causes underestimation of the numerosity of a subsequent set of items, and vice versa. Several studies have investigated adaptation in the auditory and visual modality, whereby stimuli are preferentially encoded in an external coordinate system. As tactile stimuli are primarily coded in an internal (body-centered) reference frame, here we ask whether tactile numerosity adaptation operates based on internal or external spatial coordinates as it occurs in vision or audition. Twenty participants performed an adaptation task with their right hand located either in the right (uncrossed) or left (crossed) hemispace, in order for the two hands to occupy either two completely different positions, or the same position in space, respectively. Tactile adaptor and test stimuli were passively delivered either to the same (adapted) or different (non-adapted) hands. Our results show a clear signature of tactile numerosity adaptation aftereffects with a pattern of over- and under-estimation according to the adaptation rate (low and high, respectively). In the uncrossed position, we observed stronger adaptation effects when adaptor and test stimuli were delivered to the "adapted" hand. However, when both hands were aligned in the same spatial position (crossed condition), the magnitude of adaptation was similar irrespective of which hand received adaptor and test stimuli. These results demonstrate that numerosity information is automatically coded in external coordinates even in the tactile modality, suggesting that such a spatial reference frame is an intrinsic property of numerosity processing irrespective of the sensory modality.
Collapse
Affiliation(s)
- Irene Togoli
- International School for Advanced Studies (SISSA), Trieste, Italy.
| | - Cathy Marlair
- Psychological Sciences Research Institute (IPSY) and Institute of NeuroScience (IoNS), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Olivier Collignon
- Psychological Sciences Research Institute (IPSY) and Institute of NeuroScience (IoNS), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Roberto Arrighi
- University of Florence, Department of Neuroscience, Psychology and Child Health, Florence, Italy.
| | - Virginie Crollen
- Psychological Sciences Research Institute (IPSY) and Institute of NeuroScience (IoNS), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
The shared numerical representation for action and perception develops independently from vision. Cortex 2020; 129:436-445. [DOI: 10.1016/j.cortex.2020.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/21/2020] [Accepted: 05/07/2020] [Indexed: 01/29/2023]
|
3
|
The influence of visual experience and cognitive goals on the spatial representations of nociceptive stimuli. Pain 2019; 161:328-337. [DOI: 10.1097/j.pain.0000000000001721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Liu Y, Medina J. Integrating multisensory information across external and motor-based frames of reference. Cognition 2018; 173:75-86. [DOI: 10.1016/j.cognition.2018.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
|
5
|
Itaguchi Y, Kaneko F. Motor priming by movement observation with contralateral concurrent action execution. Hum Mov Sci 2018; 57:94-102. [DOI: 10.1016/j.humov.2017.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
|
6
|
Schubert JTW, Badde S, Röder B, Heed T. Task demands affect spatial reference frame weighting during tactile localization in sighted and congenitally blind adults. PLoS One 2017; 12:e0189067. [PMID: 29228023 PMCID: PMC5724835 DOI: 10.1371/journal.pone.0189067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/17/2017] [Indexed: 11/18/2022] Open
Abstract
Task demands modulate tactile localization in sighted humans, presumably through weight adjustments in the spatial integration of anatomical, skin-based, and external, posture-based information. In contrast, previous studies have suggested that congenitally blind humans, by default, refrain from automatic spatial integration and localize touch using only skin-based information. Here, sighted and congenitally blind participants localized tactile targets on the palm or back of one hand, while ignoring simultaneous tactile distractors at congruent or incongruent locations on the other hand. We probed the interplay of anatomical and external location codes for spatial congruency effects by varying hand posture: the palms either both faced down, or one faced down and one up. In the latter posture, externally congruent target and distractor locations were anatomically incongruent and vice versa. Target locations had to be reported either anatomically (“palm” or “back” of the hand), or externally (“up” or “down” in space). Under anatomical instructions, performance was more accurate for anatomically congruent than incongruent target-distractor pairs. In contrast, under external instructions, performance was more accurate for externally congruent than incongruent pairs. These modulations were evident in sighted and blind individuals. Notably, distractor effects were overall far smaller in blind than in sighted participants, despite comparable target-distractor identification performance. Thus, the absence of developmental vision seems to be associated with an increased ability to focus tactile attention towards a non-spatially defined target. Nevertheless, that blind individuals exhibited effects of hand posture and task instructions in their congruency effects suggests that, like the sighted, they automatically integrate anatomical and external information during tactile localization. Moreover, spatial integration in tactile processing is, thus, flexibly adapted by top-down information—here, task instruction—even in the absence of developmental vision.
Collapse
Affiliation(s)
- Jonathan T. W. Schubert
- Biological Psychology and Neuropsychology, Faculty of Psychology and Human Movement Science, University of Hamburg, Hamburg, Germany
| | - Stephanie Badde
- Biological Psychology and Neuropsychology, Faculty of Psychology and Human Movement Science, University of Hamburg, Hamburg, Germany
- Department of Psychology, New York University, New York, United States of America
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, Faculty of Psychology and Human Movement Science, University of Hamburg, Hamburg, Germany
| | - Tobias Heed
- Biological Psychology and Neuropsychology, Faculty of Psychology and Human Movement Science, University of Hamburg, Hamburg, Germany
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports Science, Bielefeld University, Bielefeld, Germany
- Center of Excellence in Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
7
|
Abstract spatial, but not body-related, visual information guides bimanual coordination. Sci Rep 2017; 7:16732. [PMID: 29196722 PMCID: PMC5711801 DOI: 10.1038/s41598-017-16860-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/19/2017] [Indexed: 11/09/2022] Open
Abstract
Visual spatial information is paramount in guiding bimanual coordination, but anatomical factors, too, modulate performance in bimanual tasks. Vision conveys not only abstract spatial information, but also informs about body-related aspects such as posture. Here, we asked whether, accordingly, visual information induces body-related, or merely abstract, perceptual-spatial constraints in bimanual movement guidance. Human participants made rhythmic, symmetrical and parallel, bimanual index finger movements with the hands held in the same or different orientations. Performance was more accurate for symmetrical than parallel movements in all postures, but additionally when homologous muscles were concurrently active, such as when parallel movements were performed with differently rather than identically oriented hands. Thus, both perceptual and anatomical constraints were evident. We manipulated visual feedback with a mirror between the hands, replacing the image of the right with that of the left hand and creating the visual impression of bimanual symmetry independent of the right hand’s true movement. Symmetrical mirror feedback impaired parallel, but improved symmetrical bimanual performance compared with regular hand view. Critically, these modulations were independent of hand posture and muscle homology. Thus, visual feedback appears to contribute exclusively to spatial, but not to body-related, anatomical movement coding in the guidance of bimanual coordination.
Collapse
|
8
|
Visual Experience Shapes the Neural Networks Remapping Touch into External Space. J Neurosci 2017; 37:10097-10103. [PMID: 28947578 DOI: 10.1523/jneurosci.1213-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/26/2017] [Indexed: 11/21/2022] Open
Abstract
Localizing touch relies on the activation of skin-based and externally defined spatial frames of reference. Psychophysical studies have demonstrated that early visual deprivation prevents the automatic remapping of touch into external space. We used fMRI to characterize how visual experience impacts the brain circuits dedicated to the spatial processing of touch. Sighted and congenitally blind humans performed a tactile temporal order judgment (TOJ) task, either with the hands uncrossed or crossed over the body midline. Behavioral data confirmed that crossing the hands has a detrimental effect on TOJ judgments in sighted but not in early blind people. Crucially, the crossed hand posture elicited enhanced activity, when compared with the uncrossed posture, in a frontoparietal network in the sighted group only. Psychophysiological interaction analysis revealed, however, that the congenitally blind showed enhanced functional connectivity between parietal and frontal regions in the crossed versus uncrossed hand postures. Our results demonstrate that visual experience scaffolds the neural implementation of the location of touch in space.SIGNIFICANCE STATEMENT In daily life, we seamlessly localize touch in external space for action planning toward a stimulus making contact with the body. For efficient sensorimotor integration, the brain has therefore to compute the current position of our limbs in the external world. In the present study, we demonstrate that early visual deprivation alters the brain activity in a dorsal parietofrontal network typically supporting touch localization in the sighted. Our results therefore conclusively demonstrate the intrinsic role that developmental vision plays in scaffolding the neural implementation of touch perception.
Collapse
|
9
|
Crollen V, Albouy G, Lepore F, Collignon O. How visual experience impacts the internal and external spatial mapping of sensorimotor functions. Sci Rep 2017; 7:1022. [PMID: 28432316 PMCID: PMC5430802 DOI: 10.1038/s41598-017-01158-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/27/2017] [Indexed: 11/21/2022] Open
Abstract
Tactile perception and motor production share the use of internally- and externally-defined coordinates. In order to examine how visual experience affects the internal/external coding of space for touch and movement, early blind (EB) and sighted controls (SC) took part in two experiments. In experiment 1, participants were required to perform a Temporal Order Judgment task (TOJ), either with their hands in parallel or crossed over the body midline. Confirming previous demonstration, crossing the hands led to a significant decrement in performance in SC but did not affect EB. In experiment 2, participants were trained to perform a sequence of five-finger movements. They were tested on their ability to produce, with the same hand but with the keypad turned upside down, the learned (internal) or the mirror (external) sequence. We observed significant transfer of motor sequence knowledge in both EB and SC irrespective of whether the representation of the sequence was internal or external. Together, these results demonstrate that visual experience differentially impacts the automatic weight attributed to internal versus external coordinates depending on task-specific spatial requirements.
Collapse
Affiliation(s)
- Virginie Crollen
- Centre for Mind/Brain Science, University of Trento, Mattarello, Italy.
| | - Geneviève Albouy
- Movement Control & Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Belgium
| | - Franco Lepore
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC), Université de Montréal, Montreal, Canada
| | - Olivier Collignon
- Centre for Mind/Brain Science, University of Trento, Mattarello, Italy.,Institute of Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
10
|
Cavallo A, Ansuini C, Gori M, Tinti C, Tonelli A, Becchio C. Anticipatory action planning in blind and sighted individuals. Sci Rep 2017; 7:44617. [PMID: 28304373 PMCID: PMC5356336 DOI: 10.1038/srep44617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/10/2017] [Indexed: 11/09/2022] Open
Abstract
Several studies on visually guided reach-to-grasp movements have documented that how objects are grasped differs depending on the actions one intends to perform subsequently. However, no previous study has examined whether this differential grasping may also occur without visual input. In this study, we used motion capture technology to investigate the influence of visual feedback and prior visual experience on the modulation of kinematics by intention in sighted (in both full-vision and no-vision conditions), early-blind and late-blind participants. Results provide evidence of modulation of kinematics by intention to a similar degree under both full-vision and no-vision conditions. Moreover, they demonstrate that prior visual experience has little impact on the tailoring of grasping movements to intention. This suggests that sequential action planning does not depend on visual input, and may instead be ascribed to the function of multisensory-motor cortical network that operates and develops not only in light, but also in darkness.
Collapse
Affiliation(s)
| | - Caterina Ansuini
- Cognition, Motion and Neuroscience Unit, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Monica Gori
- Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Carla Tinti
- Department of Psychology, University of Turin, Italy
| | - Alessia Tonelli
- Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Cristina Becchio
- Department of Psychology, University of Turin, Italy.,Cognition, Motion and Neuroscience Unit, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
11
|
Stroking me softly: Body-related effects in effect-based action control. Atten Percept Psychophys 2016; 78:1755-70. [DOI: 10.3758/s13414-016-1151-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Muraoka T, Nakagawa K, Kato K, Qi W, Kanosue K. Interlimb coordination from a psychological perspective. ACTA ACUST UNITED AC 2016. [DOI: 10.7600/jpfsm.5.349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Kento Nakagawa
- Graduate School of Arts and Sciences, The University of Tokyo
- Japan Society for the Promotion of Science
| | - Kouki Kato
- Laboratory of Sport Neuroscience, Faculty of Sport Sciences, Waseda University
| | - Weihuang Qi
- Graduate School of Sport Sciences, Waseda University
| | - Kazuyuki Kanosue
- Laboratory of Sport Neuroscience, Faculty of Sport Sciences, Waseda University
| |
Collapse
|
13
|
Space and time in the sighted and blind. Cognition 2015; 141:67-72. [DOI: 10.1016/j.cognition.2015.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/26/2015] [Accepted: 04/01/2015] [Indexed: 11/22/2022]
|
14
|
Oscillatory activity reflects differential use of spatial reference frames by sighted and blind individuals in tactile attention. Neuroimage 2015; 117:417-28. [DOI: 10.1016/j.neuroimage.2015.05.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/24/2015] [Accepted: 05/24/2015] [Indexed: 11/19/2022] Open
|