1
|
Schmidt A, Meindl T, Albu-Schäffer A, Franklin DW, Stratmann P. Influence of serotonin on the long-term muscle contraction of the Kohnstamm phenomenon. Sci Rep 2025; 15:16588. [PMID: 40360607 PMCID: PMC12075605 DOI: 10.1038/s41598-025-00444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Neuromodulation plays a central role in human movement control. An imbalance of neurotransmitters, especially dopamine and serotonin, can be associated with various neurological disorders causing tremors or spasms. Specifically, serotonin was shown to scale motoneuron excitability following intense muscle contractions, affecting short-latency reflexes. Likely, it may also influence motoneuron modulation in prolonged contractions, although this lacks experimental evidence. An intriguing test case for this hypothesis is presented by the Kohnstamm phenomenon, where sustained muscle contractions lead to prolonged amplified EMG activity and involuntary motions, aligning with the timescale of serotonergic amplification. The suspected serotonin influence on this effect was tested in a placebo-controlled human user study with 14 participants, where half were administered the serotonin antagonist Cyproheptadine and the other half a placebo. Comparing EMG and force responses after inducing the Kohnstamm phenomenon in the deltoid muscles revealed statistically significant faster EMG decay with the serotonin antagonist, while decay remained consistent in the placebo group compared to the response of the same participant group without medication. The force measurements showed the same trend, although no significance. This provides new data-based evidence that serotonin contributes to long-term motoneuron modulation, extending previous findings about the dedicated role and influence of this neurotransmitter. Additionally, the work suggests the phenomenon as an interesting test case to investigate the dedicated involvement of different neurocontrol mechanisms such as Persistent Inward Currents.
Collapse
Affiliation(s)
- Annika Schmidt
- TUM School of Computation, Information and Technology, Technical University of Munich (TUM), 85748, Garching, Germany.
- Institute of Robotics and Mechtronics, German Aerospace Center (DLR), 82234, Wessling, Germany.
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich (TUM), 80992, Munich, Germany.
| | - Tobias Meindl
- Department of Neurology, University Hospital rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Alin Albu-Schäffer
- TUM School of Computation, Information and Technology, Technical University of Munich (TUM), 85748, Garching, Germany
- Institute of Robotics and Mechtronics, German Aerospace Center (DLR), 82234, Wessling, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich (TUM), 80992, Munich, Germany
| | - David W Franklin
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich (TUM), 80992, Munich, Germany
- Neuromuscular Diagnostics, TUM School of Medicine and Health, Technical University of Munich, 80992, Munich, Germany
- Munich Data Science Institute (MDSI), Technical University of Munich, 80992, Munich, Germany
| | - Philipp Stratmann
- TUM School of Computation, Information and Technology, Technical University of Munich (TUM), 85748, Garching, Germany
- Institute of Robotics and Mechtronics, German Aerospace Center (DLR), 82234, Wessling, Germany
| |
Collapse
|
2
|
Cai NM, Dewald JPA, Gurari N. Individuals with hemiparetic stroke abnormally perceive their elbow torques when abducting their paretic shoulder. Clin Neurophysiol 2023; 156:38-46. [PMID: 37862726 PMCID: PMC10842013 DOI: 10.1016/j.clinph.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/15/2023] [Accepted: 09/11/2023] [Indexed: 10/22/2023]
Abstract
OBJECTIVE Individuals with hemiparetic stroke exhibit an abnormal coupling between shoulder abduction and elbow flexion, or flexion synergy, due to an increased reliance on cortico-bulbospinal pathways. While this motor impairment is well documented, its impact on how movements are perceived remains unexplored. This study investigates whether individuals with hemiparetic stroke accurately perceive torques at their paretic elbow while abducting at their shoulder. METHODS Ten individuals with hemiparetic stroke participated. We recorded the extent of their abnormal joint coupling as the torque at their elbow, with respect to the maximum voluntary torque in elbow flexion, when abducting at their shoulder. Next, we estimated the perception of their elbow torque by reporting their errors on our torque-matching task. RESULTS When abducting at the shoulder, the participants with stroke generated a greater non-volitional torque at their paretic elbow (13.2 ± 8.7%) than their non-paretic elbow (1.2 ± 11.2%) (p = 0.003). Regarding the perception of our torque-matching task, participants overestimated their torques to a lesser extent at their paretic elbow (1.8 ± 6.6%) than at their non-paretic elbow (6.2 ± 5.4%) (p = 0.004). CONCLUSIONS Torque perception at the paretic elbow differed from the non-paretic elbow when abducting at the shoulder. SIGNIFICANCE This work advances our understanding of the i) somatosensory deficits occurring post hemiparetic stroke and ii) neural basis of torque perception.
Collapse
Affiliation(s)
- Ninghe M Cai
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, Northwestern University, Chicago, IL 60611, USA
| | - Netta Gurari
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering & Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
3
|
Attribution of sensory prediction error to perception of muscle fatigue. Sci Rep 2022; 12:16708. [PMID: 36202958 PMCID: PMC9537327 DOI: 10.1038/s41598-022-20765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Sensory prediction-error is vital to discriminating whether sensory inputs are caused externally or are the consequence of self-action, thereby contributing to a stable perception of the external world and building sense of agency. However, it remains unexplored whether prediction error of self-action is also used to estimate the internal body condition. To address this point, we examined whether prediction error affects the perceived intensity of muscle fatigue. Participants evaluated fatigue while maintaining repetitive finger movements. To provide prediction error, we inserted a temporal delay into online visual feedback of self-movements. The results show that the subjective rating of muscle fatigue significantly increased under the delayed visual feedback, suggesting that prediction error enhances the perception of muscle fatigue. Furthermore, we introduced visual feedback that preceded actual finger movements to test whether the temporal direction of the mismatch is crucial in estimating muscle fatigue. We found that perceived fatigue was significantly weaker with preceding visual feedback compared to normal feedback, showing that the perception of muscle fatigue is affected by the signed prediction-error. Our findings support the idea that the brain flexibly attributes prediction errors to a self-origin with keeping sense of agency, or external origin by considering contexts and error characteristics.
Collapse
|
4
|
Hannah R, Aron AR. Towards real-world generalizability of a circuit for action-stopping. Nat Rev Neurosci 2021; 22:538-552. [PMID: 34326532 PMCID: PMC8972073 DOI: 10.1038/s41583-021-00485-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Two decades of cross-species neuroscience research on rapid action-stopping in the laboratory has provided motivation for an underlying prefrontal-basal ganglia circuit. Here we provide an update of key studies from the past few years. We conclude that this basic neural circuit is on increasingly firm ground, and we move on to consider whether the action-stopping function implemented by this circuit applies beyond the simple laboratory stop signal task. We advance through a series of studies of increasing 'real-worldness', starting with laboratory tests of stopping of speech, gait and bodily functions, and then going beyond the laboratory to consider neural recordings and stimulation during moments of control presumably required in everyday activities such as walking and driving. We end by asking whether stopping research has clinical relevance, focusing on movement disorders such as stuttering, tics and freezing of gait. Overall, we conclude there are hints that the prefrontal-basal ganglia action-stopping circuit that is engaged by the basic stop signal task is recruited in myriad scenarios; however, truly proving this for real-world scenarios requires a new generation of studies that will need to overcome substantial technical and inferential challenges.
Collapse
Affiliation(s)
- Ricci Hannah
- Department of Psychology, University of California San Diego, San Diego, CA, USA.
| | - Adam R Aron
- Department of Psychology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
5
|
On Stopping Voluntary Muscle Relaxations and Contractions: Evidence for Shared Control Mechanisms and Muscle State-Specific Active Breaking. J Neurosci 2020; 40:6035-6048. [PMID: 32611708 DOI: 10.1523/jneurosci.0002-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/16/2020] [Accepted: 06/19/2020] [Indexed: 11/21/2022] Open
Abstract
Control of the body requires inhibiting complex actions, involving contracting and relaxing muscles. However, little is known of how voluntary commands to relax a muscle are cancelled. Action inhibition causes both suppression of muscle activity and the transient excitation of antagonist muscles, the latter being termed active breaking. We hypothesized that active breaking is present when stopping muscle relaxations. Stop signal experiments were used to compare the mechanisms of active breaking for muscle relaxations and contractions in male and female human participants. In experiments 1 and 2, go signals were presented that required participants to contract or relax their biceps or triceps muscle. Infrequent Stop signals occurred after fixed delays (0-500 ms), requiring that participants cancelled go commands. In experiment 3, participants increased (contract) or decreased (relax) an existing isometric finger abduction depending on the go signal, and cancelled these force changes whenever Stop signals occurred (dynamically adjusted delay). We found that muscle relaxations were stopped rapidly, met predictions of existing race models, and had Stop signal reaction times that correlated with those observed during the stopping of muscle contractions, suggesting shared control mechanisms. However, stopped relaxations were preceded by transient increases in electromyography (EMG), while stopped contractions were preceded by decreases in EMG, suggesting a later divergence of control. Muscle state-specific active breaking occurred simultaneously across muscles, consistent with a central origin. Our results indicate that the later stages of action inhibition involve separate excitatory and inhibitory pathways, which act automatically to cancel complex body movements.SIGNIFICANCE STATEMENT The mechanisms of how muscle relaxations are cancelled are poorly understood. We showed in three experiments involving multiple effectors that stopping muscle relaxations involves transient bursts of EMG activity, which resemble cocontraction and have onsets that correlate with Stop signal reaction time. Comparison with the stopping of matched muscle contractions showed that active breaking was muscle state specific, being positive for relaxations and negative for contractions. The two processes were also observed to co-occur in agonist-antagonist pairs, suggesting separate pathways. The rapid, automatic activation of both pathways may explain how complex actions can be stopped at any stage of their execution.
Collapse
|
6
|
Cotter KN. Mental Control in Musical Imagery: A Dual Component Model. Front Psychol 2019; 10:1904. [PMID: 31496973 PMCID: PMC6712095 DOI: 10.3389/fpsyg.2019.01904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
Hearing music in your head is a ubiquitous experience, but the role mental control plays in these experiences has not been deeply addressed. In this conceptual analysis, a dual-component model of mental control in musical imagery experiences is developed and discussed. The first component, initiation, refers to whether the musical imagery experience began voluntarily or involuntarily. The second component, management, refers to instances of control that occur after the experience has begun (e.g., changing the song, stopping the experience). Given the complex nature of this inner experience, we propose a new model combining and integrating four literatures: lab-based auditory imagery research using musical stimuli; involuntary musical imagery; mental rehearsal and composition in musicians; and in vivo studies of musical imagery in everyday environments. These literatures support the contention that mental control of musical imagery is multi-faceted. Future research should investigate these two components of mental control and better integrate the diverse literatures on musical imagery.
Collapse
Affiliation(s)
- Katherine N. Cotter
- Department of Psychology, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
7
|
Ganos C, Rocchi L, Latorre A, Hockey L, Palmer C, Joyce EM, Bhatia KP, Haggard P, Rothwell J. Motor cortical excitability during voluntary inhibition of involuntary tic movements. Mov Disord 2018; 33:1804-1809. [DOI: 10.1002/mds.27479] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 01/23/2023] Open
Affiliation(s)
- Christos Ganos
- Department of Neurology, Charité; University Medicine; Berlin Germany
- Institute of Cognitive Neuroscience; University College London; London UK
- Department of Clinical and Movement Neuroscience; UCL Queen Square Institute of Neurology; London UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neuroscience; UCL Queen Square Institute of Neurology; London UK
| | - Anna Latorre
- Department of Clinical and Movement Neuroscience; UCL Queen Square Institute of Neurology; London UK
- Department of Neurology and Psychiatry, Sapienza; University of Rome; Rome Italy
| | - Leanne Hockey
- Department of Clinical and Movement Neuroscience; UCL Queen Square Institute of Neurology; London UK
| | - Clare Palmer
- Department of Clinical and Movement Neuroscience; UCL Queen Square Institute of Neurology; London UK
| | - Eileen M. Joyce
- Department of Clinical and Movement Neuroscience; UCL Queen Square Institute of Neurology; London UK
| | - Kailash P. Bhatia
- Department of Clinical and Movement Neuroscience; UCL Queen Square Institute of Neurology; London UK
| | - Patrick Haggard
- Institute of Cognitive Neuroscience; University College London; London UK
| | - John Rothwell
- Department of Clinical and Movement Neuroscience; UCL Queen Square Institute of Neurology; London UK
| |
Collapse
|
8
|
De Havas J, Ito S, Haggard P, Gomi H. Low Gain Servo Control During the Kohnstamm Phenomenon Reveals Dissociation Between Low-Level Control Mechanisms for Involuntary vs. Voluntary Arm Movements. Front Behav Neurosci 2018; 12:113. [PMID: 29899692 PMCID: PMC5988889 DOI: 10.3389/fnbeh.2018.00113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/14/2018] [Indexed: 12/28/2022] Open
Abstract
The Kohnstamm phenomenon is a prolonged involuntary aftercontraction following a sustained voluntary isometric muscle contraction. The control principles of the Kohnstamm have been investigated using mechanical perturbations, but previous studies could not dissociate sensorimotor responses to perturbation from effects of gravity. We induced a horizontal, gravity-independent Kohnstamm movement around the shoulder joint, and applied resistive or assistive torques of 0.5 Nm after 20° angular displacement. A No perturbation control condition was included. Further, participants made velocity-matched voluntary movements, with or without similar perturbations, yielding a 2 × 3 factorial design. Resistive perturbations produced an increase in agonist electromyography (EMG), in both Kohnstamm and voluntary movements, while assistive perturbations produced a decrease. While overall Kohnstamm EMGs were greater than voluntary EMGs, the EMG responses to perturbation, when expressed as a percentage of unperturbed EMG activity, were significantly smaller during Kohnstamm movements than during voluntary movements. The results suggest that the Kohnstamm aftercontraction involves a central drive, coupled with low-gain servo control by a negative feedback loop between afferent input and a central motor command. The combination of strong efferent drive with low reflex gain may characterize involuntary control of postural muscles. Our results question traditional accounts involving purely reflexive mechanisms of postural maintenance. They also question existing high-gain, peripheral accounts of the Kohnstamm phenomenon, as well as accounts involving a central adaptation interacting with muscle receptors via a positive force feedback loop.
Collapse
Affiliation(s)
- Jack De Havas
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Japan.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,International Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Sho Ito
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Japan
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Hiroaki Gomi
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Japan
| |
Collapse
|
9
|
De Havas J, Gomi H, Haggard P. Experimental investigations of control principles of involuntary movement: a comprehensive review of the Kohnstamm phenomenon. Exp Brain Res 2017; 235:1953-1997. [PMID: 28374088 PMCID: PMC5486926 DOI: 10.1007/s00221-017-4950-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/25/2017] [Indexed: 12/26/2022]
Abstract
The Kohnstamm phenomenon refers to the observation that if one pushes the arm hard outwards against a fixed surface for about 30 s, and then moves away from the surface and relaxes, an involuntary movement of the arm occurs, accompanied by a feeling of lightness. Central, peripheral and hybrid theories of the Kohnstamm phenomenon have been advanced. Afferent signals may be irrelevant if purely central theories hold. Alternatively, according to peripheral accounts, altered afferent signalling actually drives the involuntary movement. Hybrid theories suggest afferent signals control a centrally-programmed aftercontraction via negative position feedback control or positive force feedback control. The Kohnstamm phenomenon has provided an important scientific method for comparing voluntary with involuntary movement, both with respect to subjective experience, and for investigating whether involuntary movements can be brought under voluntary control. A full review of the literature reveals that a hybrid model best explains the Kohnstamm phenomenon. On this model, a central adaptation interacts with afferent signals at multiple levels of the motor hierarchy. The model assumes that a Kohnstamm generator sends output via the same pathways as voluntary movement, yet the resulting movement feels involuntary due to a lack of an efference copy to cancel against sensory inflow. This organisation suggests the Kohnstamm phenomenon could represent an amplification of neuromotor processes normally involved in automatic postural maintenance. Future work should determine which afferent signals contribute to the Kohnstamm phenomenon, the location of the Kohnstamm generator, and the principle of feedback control operating during the aftercontraction.
Collapse
Affiliation(s)
- Jack De Havas
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London, WC1N 3AR, UK.
| | - Hiroaki Gomi
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Wakamiya 3-1, Morinosato, Atsugi, Kanagawa-Pref., 243-0198, Japan
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London, WC1N 3AR, UK
| |
Collapse
|