1
|
Cogo PR, Moadab G, Bliss-Moreau E, Pittet F. Prenatal Zika Virus Exposure Alters the Interaction Between Affective Processing and Decision-Making in Juvenile Rhesus Macaques (Macaca mulatta). Dev Psychobiol 2024; 66:e70002. [PMID: 39508455 DOI: 10.1002/dev.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 11/15/2024]
Abstract
Many challenges during pregnancy can disrupt fetal development and have varying consequences on the subsequent psychological development of infants. Notably, exposure to infectious pathogens during fetal development, such as those encountered in viral pandemics, has been associated with persistent developmental consequences on infants' brains and behavior. However, the underlying mechanisms and the degree to which neural plasticity over infancy may accommodate fetal insults remain unclear. To address this gap, we investigated the interaction between affective processing and decision-making in a cohort of rhesus monkey juveniles exposed to Zika virus (ZIKV) during fetal development, a pathogen known to profoundly disrupt central nervous system development. Ten juveniles exposed to ZIKV during their fetal development and nine procedure-matched controls (CONs) completed a judgment bias task with and without a negative mood induction. Although ZIKV exposure did not impact the monkeys' decision-making processes during the task or the magnitude of their behavioral responses to the mood induction procedure, it did alter the influence of mood induction on decision-making. Although CON monkeys exhibited significantly more conservative decision-making following negative mood induction, the decision-making of Zika-exposed monkeys remained consistent among conditions. These findings suggest that fetal exposure to ZIKV impacts the neural systems involved in integrating affective and cognitive information, with potential long-term implications for learning, memory, and emotion regulation.
Collapse
Affiliation(s)
- Patrick R Cogo
- California National Primate Research Center, University of California, Davis, California, USA
| | - Gilda Moadab
- California National Primate Research Center, University of California, Davis, California, USA
- Department of Psychology, University of California, Davis, California, USA
| | - Eliza Bliss-Moreau
- California National Primate Research Center, University of California, Davis, California, USA
- Department of Psychology, University of California, Davis, California, USA
| | - Florent Pittet
- California National Primate Research Center, University of California, Davis, California, USA
| |
Collapse
|
2
|
Klotzsche F, Motyka P, Molak A, Sahula V, Darmová B, Byrnes C, Fajnerová I, Gaebler M. No cardiac phase bias for threat-related distance perception under naturalistic conditions in immersive virtual reality. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241072. [PMID: 39479236 PMCID: PMC11521594 DOI: 10.1098/rsos.241072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024]
Abstract
Previous studies have found that threatening stimuli are more readily perceived and more intensely experienced when presented during cardiac systole compared with diastole. Also, threatening stimuli are judged as physically closer than neutral ones. In a pre-registered study, we tested these effects and their interaction using a naturalistic (interactive and three-dimensional) experimental design in immersive virtual reality: we briefly displayed threatening and non-threatening animals (four each) at varying distances (1.5-5.5 m) to a group of young, healthy participants (n = 41) while recording their electrocardiograms (ECGs). Participants then pointed to the location where they had seen the animal (approx. 29 000 trials in total). Our pre-registered analyses indicated that perceived distances to both threatening and non-threatening animals did not differ significantly between cardiac phases-with Bayesian analysis supporting the null hypothesis. There was also no evidence for an association between subjective fear and perceived proximity to threatening animals. These results contrast with previous findings that used verbal or declarative distance measures in less naturalistic experimental conditions. Furthermore, our findings suggest that the cardiac phase-related variation in threat processing may not generalize across different paradigms and may be less relevant in naturalistic scenarios than under more abstract experimental conditions.
Collapse
Affiliation(s)
- Felix Klotzsche
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin School of Mind and Brain, Berlin, Germany
| | - Paweł Motyka
- Polish Academy of Sciences, Institute of Psychology, Warsaw, Poland
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Aleksander Molak
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
- CausalPython.io, Warsaw, Poland
| | - Václav Sahula
- National Institute of Mental Health, Center for Virtual Reality Research in Mental Health and Neuroscience, Klecany, Czechia
| | - Barbora Darmová
- National Institute of Mental Health, Center for Virtual Reality Research in Mental Health and Neuroscience, Klecany, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Conor Byrnes
- Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin School of Mind and Brain, Berlin, Germany
| | - Iveta Fajnerová
- National Institute of Mental Health, Center for Virtual Reality Research in Mental Health and Neuroscience, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Michael Gaebler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin School of Mind and Brain, Berlin, Germany
| |
Collapse
|
3
|
Goodwin I, Hester R, Garrido MI. Temporal stability of Bayesian belief updating in perceptual decision-making. Behav Res Methods 2024; 56:6349-6362. [PMID: 38129733 PMCID: PMC11335944 DOI: 10.3758/s13428-023-02306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Bayesian inference suggests that perception is inferred from a weighted integration of prior contextual beliefs with current sensory evidence (likelihood) about the world around us. The perceived precision or uncertainty associated with prior and likelihood information is used to guide perceptual decision-making, such that more weight is placed on the source of information with greater precision. This provides a framework for understanding a spectrum of clinical transdiagnostic symptoms associated with aberrant perception, as well as individual differences in the general population. While behavioral paradigms are commonly used to characterize individual differences in perception as a stable characteristic, measurement reliability in these behavioral tasks is rarely assessed. To remedy this gap, we empirically evaluate the reliability of a perceptual decision-making task that quantifies individual differences in Bayesian belief updating in terms of the relative precision weighting afforded to prior and likelihood information (i.e., sensory weight). We analyzed data from participants (n = 37) who performed this task twice. We found that the precision afforded to prior and likelihood information showed high internal consistency and good test-retest reliability (ICC = 0.73, 95% CI [0.53, 0.85]) when averaged across participants, as well as at the individual level using hierarchical modeling. Our results provide support for the assumption that Bayesian belief updating operates as a stable characteristic in perceptual decision-making. We discuss the utility and applicability of reliable perceptual decision-making paradigms as a measure of individual differences in the general population, as well as a diagnostic tool in psychiatric research.
Collapse
Affiliation(s)
- Isabella Goodwin
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia.
| | - Robert Hester
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia
| | - Marta I Garrido
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Bakst L, McGuire JT. Experience-driven recalibration of learning from surprising events. Cognition 2023; 232:105343. [PMID: 36481590 PMCID: PMC9851993 DOI: 10.1016/j.cognition.2022.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Different environments favor different patterns of adaptive learning. A surprising event that in one context would accelerate belief updating might, in another context, be downweighted as a meaningless outlier. Here, we investigated whether people would spontaneously regulate the influence of surprise on learning in response to event-by-event experiential feedback. Across two experiments, we examined whether participants performing a perceptual judgment task under spatial uncertainty (n = 29, n = 63) adapted their patterns of predictive gaze according to the informativeness or uninformativeness of surprising events in their current environment. Uninstructed predictive eye movements exhibited a form of metalearning in which surprise came to modulate event-by-event learning rates in opposite directions across contexts. Participants later appropriately readjusted their patterns of adaptive learning when the statistics of the environment underwent an unsignaled reversal. Although significant adjustments occurred in both directions, performance was consistently superior in environments in which surprising events reflected meaningful change, potentially reflecting a bias towards interpreting surprise as informative and/or difficulty ignoring salient outliers. Our results provide evidence for spontaneous, context-appropriate recalibration of the role of surprise in adaptive learning.
Collapse
Affiliation(s)
- Leah Bakst
- Department of Psychological & Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA; Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA.
| | - Joseph T McGuire
- Department of Psychological & Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA; Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA.
| |
Collapse
|
5
|
Acute threat enhances perceptual sensitivity without affecting the decision criterion. Sci Rep 2022; 12:9071. [PMID: 35641536 PMCID: PMC9156772 DOI: 10.1038/s41598-022-11664-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Threatening situations ask for rapid and accurate perceptual decisions to optimize coping. Theoretical models have stated that psychophysiological states, such as bradycardia during threat-anticipatory freezing, may facilitate perception. However, it’s unclear if this occurs via enhanced bottom-up sensory processing or by relying more on prior expectations. To test this, 52 (26 female) participants completed a visual target-detection paradigm under threat-of-shock (15% reinforcement rate) with a manipulation of prior expectations. Participants judged the presence of a backward-masked grating (target presence rate 50%) after systematically manipulating their decision criterion with a rare (20%) or frequent (80%) target presence rate procedure. Threat-of-shock induced stronger heart rate deceleration compared to safe, indicative of threat-anticipatory freezing. Importantly, threat-of-shock enhanced perceptual sensitivity but we did not find evidence of an altered influence of the effect of prior expectations on current decisions. Correct target detection (hits) was furthermore accompanied by an increase in the magnitude of this heart rate deceleration compared to a missed target. While this was independent of threat-of-shock manipulation, only under threat-of-shock this increase was accompanied by more hits and increased sensitivity. Together, these findings suggest that under acute threat participants may rely more on bottom-up sensory processing versus prior expectations in perceptual decision-making. Critically, bradycardia may underlie such enhanced perceptual sensitivity.
Collapse
|
6
|
Sopp MR, Haim-Nachum S, Wirth BE, Bonanno GA, Levy-Gigi E. Leaving the door open: Trauma, updating, and the development of PTSD symptoms. Behav Res Ther 2022; 154:104098. [DOI: 10.1016/j.brat.2022.104098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023]
|
7
|
Negative affect impedes perceptual filling-in in the uniformity illusion. Conscious Cogn 2021; 98:103258. [PMID: 34965506 DOI: 10.1016/j.concog.2021.103258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/01/2021] [Accepted: 12/03/2021] [Indexed: 02/02/2023]
Abstract
The notion of cognitive penetrability, i.e., whether perceptual contents can in principle be influenced by non-perceptual factors, has sparked a significant debate over methodological concerns and the correct interpretation of existing findings. In this study, we combined predictive processing models of visual perception and affective states to investigate influences of affective valence on perceptual filling-in in extrafoveal vision. We tested how experimentally induced affect would influence the probability of perceptual filling-in occurring in the uniformity illusion (N = 50). Negative affect led to reduced occurrence rates and increased onset times of visual uniformity. This effect was selectively observed in illusionary trials, requiring perceptual filling-in, and not in control trials, where uniformity was the veridical percept, ruling out biased motor responses or deliberate judgments as confounding variables. This suggests an influential role of affective status on subsequent perceptual processing, specifically on how much weight is ascribed to priors as opposed to sensory evidence.
Collapse
|
8
|
Frank GKW, Shott ME, Stoddard J, Swindle S, Pryor TL. Association of Brain Reward Response With Body Mass Index and Ventral Striatal-Hypothalamic Circuitry Among Young Women With Eating Disorders. JAMA Psychiatry 2021; 78:1123-1133. [PMID: 34190963 PMCID: PMC8246338 DOI: 10.1001/jamapsychiatry.2021.1580] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
IMPORTANCE Eating disorders are severe psychiatric disorders; however, disease models that cross subtypes and integrate behavior and neurobiologic factors are lacking. OBJECTIVE To assess brain response during unexpected receipt or omission of a salient sweet stimulus across a large sample of individuals with eating disorders and healthy controls and test for evidence of whether this brain response is associated with the ventral striatal-hypothalamic circuitry, which has been associated with food intake control, and whether salient stimulus response and eating disorder related behaviors are associated. DESIGN, SETTING, AND PARTICIPANTS In this cross-sectional functional brain imaging study, young adults across the eating disorder spectrum were matched with healthy controls at a university brain imaging facility and eating disorder treatment program. During a sucrose taste classic conditioning paradigm, violations of learned associations between conditioned visual and unconditioned taste stimuli evoked the dopamine-related prediction error. Dynamic effective connectivity during expected sweet taste receipt was studied to investigate hierarchical brain activation between food intake relevant brain regions. The study was conducted from June 2014 to November 2019. Data were analyzed from December 2019 to February 2020. MAIN OUTCOMES AND MEASURES Prediction error brain reward response across insula and striatum; dynamic effective connectivity between hypothalamus and ventral striatum; and demographic and behavior variables and their correlations with prediction error brain response and connectivity edge coefficients. RESULTS Of 317 female participants (197 with eating disorders and 120 healthy controls), the mean (SD) age was 23.8 (5.6) years and mean (SD) body mass index was 20.8 (5.4). Prediction error response was elevated in participants with anorexia nervosa (Wilks λ, 0.843; P = .001) and in participants with eating disorders inversely correlated with body mass index (left nucleus accumbens: r = -0.291; 95% CI, -0.413 to -0.167; P < .001; right dorsal anterior insula: r = -0.228; 95% CI, -0.366 to -0.089; P = .001), eating disorder inventory-3 binge eating tendency (left nucleus accumbens: r = -0.207; 95% CI, -0.333 to -0.073; P = .004; right dorsal anterior insula: r = -0.220; 95% CI, -0.354 to -0.073; P = .002), and trait anxiety (left nucleus accumbens: r = -0.148; 95% CI, -0.288 to -0.003; P = .04; right dorsal anterior insula: r = -0.221; 95% CI, -0.357 to -0.076; P = .002). Ventral striatal to hypothalamus directed connectivity was positively correlated with ventral striatal prediction error in eating disorders (r = 0.189; 95% CI, 0.045-0.324; P = .01) and negatively correlated with feeling out of control after eating (right side: r = -0.328; 95% CI, -0.480 to -0.164; P < .001; left side: r = -0.297; 95% CI, -0.439 to -0.142; P = .001). CONCLUSIONS AND RELEVANCE The results of this cross-sectional imaging study support that body mass index modulates prediction error and food intake control circuitry in the brain. Once altered, this circuitry may reinforce eating disorder behaviors when paired with behavioral traits associated with overeating or undereating.
Collapse
Affiliation(s)
- Guido K. W. Frank
- Department of Psychiatry, University of California at San Diego, San Diego
| | - Megan E. Shott
- Department of Psychiatry, University of California at San Diego, San Diego
| | - Joel Stoddard
- Department of Psychiatry, University of Colorado, Anschutz Medical Campus, Aurora
| | - Skylar Swindle
- Department of Psychiatry, University of California at San Diego, San Diego
| | | |
Collapse
|
9
|
Musicality as a predictive process. Behav Brain Sci 2021; 44:e81. [PMID: 34588035 DOI: 10.1017/s0140525x20000746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Savage et al. argue for musicality as having evolved for the overarching purpose of social bonding. By way of contrast, we highlight contemporary predictive processing models of human cognitive functioning in which the production and enjoyment of music follows directly from the principle of prediction error minimization.
Collapse
|
10
|
Abstract
Affective bias – a propensity to focus on negative information at the expense of positive information – is a core feature of many mental health problems. However, it can be caused by wide range of possible underlying cognitive mechanisms. Here we illustrate this by focusing on one particular behavioural signature of affective bias – increased tendency of anxious/depressed individuals to predict lower rewards – in the context of the Signal Detection Theory (SDT) modelling framework. Specifically, we show how to apply this framework to measure affective bias and compare it to the behaviour of an optimal observer. We also show how to extend the framework to make predictions about bias when the individual holds incorrect assumptions about the decision context. Building on this theoretical foundation, we propose five experiments to test five hypothetical sources of this affective bias: beliefs about prior probabilities, beliefs about performance, subjective value of reward, learning differences, and need for accuracy differences. We argue that greater precision about the mechanisms driving affective bias may eventually enable us to better understand the mechanisms underlying mood and anxiety disorders.
Collapse
|