1
|
Koyano KW, Taubert J, Robison W, Waidmann EN, Leopold DA. Face pareidolia minimally engages macaque face selective neurons. Prog Neurobiol 2025; 245:102709. [PMID: 39755201 PMCID: PMC11781954 DOI: 10.1016/j.pneurobio.2024.102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/08/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
The macaque cerebral cortex contains concentrations of neurons that prefer faces over inanimate objects. Although these so-called face patches are thought to be specialized for the analysis of facial signals, their exact tuning properties remain unclear. For example, what happens when an object by chance resembles a face? Everyday objects can sometimes, through the accidental positioning of their internal components, appear as faces. This phenomenon is known as face pareidolia. Behavioral experiments have suggested that macaques, like humans, perceive illusory faces in such objects. However, it is an open question whether such stimuli would naturally stimulate neurons residing in cortical face patches. To address this question, we recorded single unit activity from four fMRI-defined face-selective regions: the anterior medial (AM), anterior fundus (AF), prefrontal orbital (PO), and perirhinal cortex (PRh) face patches. We compared neural responses elicited by images of real macaque faces, pareidolia-evoking objects, and matched control objects. Contrary to expectations, we found no evidence of a general preference for pareidolia-evoking objects over control objects. Although a subset of neurons exhibited stronger responses to pareidolia-evoking objects, the population responses to both categories of objects were similar, and collectively much less than to real macaque faces. These results suggest that neural responses in the four regions we tested are principally concerned with the analysis of realistic facial characteristics, whereas the special attention afforded to face-like pareidolia stimuli is supported by activity elsewhere in the brain.
Collapse
Affiliation(s)
- Kenji W Koyano
- Section on Cognitive Neurophysiology and Imaging, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, MD, USA.
| | - Jessica Taubert
- Section on Neurocircuitry, National Institutes of Mental Health, Bethesda, MD, USA; School of Psychology, The University of Queensland, St Lucia, Queensland, Australia
| | - William Robison
- Section on Cognitive Neurophysiology and Imaging, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, MD, USA
| | - Elena N Waidmann
- Section on Cognitive Neurophysiology and Imaging, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, MD, USA
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, MD, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, Bethesda, MD, USA.
| |
Collapse
|
2
|
Tomonaga M. I've just seen a face: further search for face pareidolia in chimpanzees ( Pan troglodytes). Front Psychol 2025; 15:1508867. [PMID: 39936109 PMCID: PMC11810910 DOI: 10.3389/fpsyg.2024.1508867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/11/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction Seeing faces in random patterns, such as in clouds, is known as pareidolia. Two possible mechanisms can cause pareidolia: a bottom-up mechanism that automatically detects inverted triangle or top-heavy patterns, and a top-down mechanism that actively seeks out faces. Pareidolia has been reported in nonhuman animals as well. In chimpanzees, it has been suggested that the bottom-up mechanism is involved in their pareidolic perception, but the extent of the contribution of the top-down mechanism remains unclear. This study investigated the role of topdown control in face detection in chimpanzees. Methods After being trained on an oddity task in which they had to select a noise pattern where a face (either human or chimpanzee) or a letter (Kanji characters) was superimposed among three patterns, they were tested with noise patterns that did not contain any target stimuli. Results When the average images of the patterns selected by the chimpanzees in these test trials were analyzed and compared with those that were not selected (i.e., difference images), a clear non-random structure was found in the difference images. In contrast, such structures were not evident in the difference images obtained by assuming that one of the three patterns was randomly selected. Discussion These results suggest that chimpanzees may have been attempting to find "faces" or "letters"in random patterns possibly through some form of top-down processing.
Collapse
Affiliation(s)
- Masaki Tomonaga
- School of Psychological Sciences, University of Human Environments, Matsuyama, Ehime, Japan
| |
Collapse
|
3
|
Gupta P, Dobs K. Human-like face pareidolia emerges in deep neural networks optimized for face and object recognition. PLoS Comput Biol 2025; 21:e1012751. [PMID: 39869654 PMCID: PMC11790231 DOI: 10.1371/journal.pcbi.1012751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/03/2025] [Accepted: 12/24/2024] [Indexed: 01/29/2025] Open
Abstract
The human visual system possesses a remarkable ability to detect and process faces across diverse contexts, including the phenomenon of face pareidolia--seeing faces in inanimate objects. Despite extensive research, it remains unclear why the visual system employs such broadly tuned face detection capabilities. We hypothesized that face pareidolia results from the visual system's optimization for recognizing both faces and objects. To test this hypothesis, we used task-optimized deep convolutional neural networks (CNNs) and evaluated their alignment with human behavioral signatures and neural responses, measured via magnetoencephalography (MEG), related to pareidolia processing. Specifically, we trained CNNs on tasks involving combinations of face identification, face detection, object categorization, and object detection. Using representational similarity analysis, we found that CNNs that included object categorization in their training tasks represented pareidolia faces, real faces, and matched objects more similarly to neural responses than those that did not. Although these CNNs showed similar overall alignment with neural data, a closer examination of their internal representations revealed that specific training tasks had distinct effects on how pareidolia faces were represented across layers. Finally, interpretability methods revealed that only a CNN trained for both face identification and object categorization relied on face-like features-such as 'eyes'-to classify pareidolia stimuli as faces, mirroring findings in human perception. Our results suggest that human-like face pareidolia may emerge from the visual system's optimization for face identification within the context of generalized object categorization.
Collapse
Affiliation(s)
- Pranjul Gupta
- Department of Experimental Psychology, Justus Liebig University Giessen, Giessen, Germany
| | - Katharina Dobs
- Department of Experimental Psychology, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain, and Behavior, Universities of Marburg, Giessen and Darmstadt, Marburg, Germany
| |
Collapse
|
4
|
Rekow D, Baudouin J, Kiseleva A, Rossion B, Durand K, Schaal B, Leleu A. Olfactory-to-visual facilitation in the infant brain declines gradually from 4 to 12 months. Child Dev 2024; 95:1967-1981. [PMID: 39022837 PMCID: PMC11579641 DOI: 10.1111/cdev.14124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
During infancy, intersensory facilitation declines gradually as unisensory perception develops. However, this trade-off was mainly investigated using audiovisual stimulations. Here, fifty 4- to 12-month-old infants (26 females, predominately White) were tested in 2017-2020 to determine whether the facilitating effect of their mother's body odor on neural face categorization, as previously observed at 4 months, decreases with age. In a baseline odor context, the results revealed a face-selective electroencephalographic response that increases and changes qualitatively between 4 and 12 months, marking improved face categorization. At the same time, the benefit of adding maternal odor fades with age (R 2 = .31), indicating an inverse relation with the amplitude of the visual response, and generalizing to olfactory-visual interactions previous evidence from the audiovisual domain.
Collapse
Affiliation(s)
- Diane Rekow
- Development of Olfactory Communication & Cognition Lab, Centre des Sciences du Goût et de l'AlimentationUniversité de Bourgogne, Université Bourgogne Franche‐Comté, CNRS, INRAe, Institut Agro DijonDijonFrance
- Biological Psychology and NeuropsychologyUniversity of HamburgHamburgGermany
| | - Jean‐Yves Baudouin
- Laboratoire “Développement, Individu, Processus, Handicap, Éducation” (DIPHE), Département Psychologie du Développement, de l'Éducation et des Vulnérabilités (PsyDÉV), Institut de PsychologieUniversité de Lyon (Lumière Lyon 2)BronFrance
- Institut Universitaire de FranceParisFrance
| | - Anna Kiseleva
- Development of Olfactory Communication & Cognition Lab, Centre des Sciences du Goût et de l'AlimentationUniversité de Bourgogne, Université Bourgogne Franche‐Comté, CNRS, INRAe, Institut Agro DijonDijonFrance
| | - Bruno Rossion
- Université de Lorraine, CNRS, IMoPANancyFrance
- Université de Lorraine, CHRU‐Nancy, Service de NeurologieNancyFrance
| | - Karine Durand
- Development of Olfactory Communication & Cognition Lab, Centre des Sciences du Goût et de l'AlimentationUniversité de Bourgogne, Université Bourgogne Franche‐Comté, CNRS, INRAe, Institut Agro DijonDijonFrance
| | - Benoist Schaal
- Development of Olfactory Communication & Cognition Lab, Centre des Sciences du Goût et de l'AlimentationUniversité de Bourgogne, Université Bourgogne Franche‐Comté, CNRS, INRAe, Institut Agro DijonDijonFrance
| | - Arnaud Leleu
- Development of Olfactory Communication & Cognition Lab, Centre des Sciences du Goût et de l'AlimentationUniversité de Bourgogne, Université Bourgogne Franche‐Comté, CNRS, INRAe, Institut Agro DijonDijonFrance
| |
Collapse
|
5
|
Gagsch F, Valuch C, Albrecht T. Measuring attentional selection of object categories using hierarchical frequency tagging. J Vis 2024; 24:8. [PMID: 38990066 PMCID: PMC11246098 DOI: 10.1167/jov.24.7.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
In the present study, we used Hierarchical Frequency Tagging (Gordon et al., 2017) to investigate in electroencephalography how different levels of the neural processing hierarchy interact with category-selective attention during visual object recognition. We constructed stimulus sequences of cyclic wavelet scrambled face and house stimuli at two different frequencies (f1 = 0.8 Hz and f2 = 1 Hz). For each trial, two stimulus sequences of different frequencies were superimposed and additionally augmented by a sinusoidal contrast modulation with f3 = 12.5 Hz. This allowed us to simultaneously assess higher level processing using semantic wavelet-induced frequency-tagging (SWIFT) and processing in earlier visual levels using steady-state visually evoked potentials (SSVEPs), along with their intermodulation (IM) components. To investigate the category specificity of the SWIFT signal, we manipulated the category congruence between target and distractor by superimposing two sequences containing stimuli from the same or different object categories. Participants attended to one stimulus (target) and ignored the other (distractor). Our results showed successful tagging of different levels of the cortical hierarchy. Using linear mixed-effects modeling, we detected different attentional modulation effects on lower versus higher processing levels. SWIFT and IM components were substantially increased for target versus distractor stimuli, reflecting attentional selection of the target stimuli. In addition, distractor stimuli from the same category as targets elicited stronger SWIFT signals than distractor stimuli from a different category indicating category-selective attention. In contrast, for IM components, this category-selective attention effect was largely absent, indicating that IM components probably reflect more stimulus-specific processing.
Collapse
Affiliation(s)
- Florian Gagsch
- Georg-Elias-Müller Institute for Psychology, Georg-August University, Göttingen, Germany
| | - Christian Valuch
- Georg-Elias-Müller Institute for Psychology, Georg-August University, Göttingen, Germany
| | - Thorsten Albrecht
- Georg-Elias-Müller Institute for Psychology, Georg-August University, Göttingen, Germany
| |
Collapse
|
6
|
Quek GL, de Heering A. Visual periodicity reveals distinct attentional signatures for face and non-face categories. Cereb Cortex 2024; 34:bhae228. [PMID: 38879816 PMCID: PMC11180377 DOI: 10.1093/cercor/bhae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/19/2024] [Accepted: 05/14/2024] [Indexed: 06/19/2024] Open
Abstract
Observers can selectively deploy attention to regions of space, moments in time, specific visual features, individual objects, and even specific high-level categories-for example, when keeping an eye out for dogs while jogging. Here, we exploited visual periodicity to examine how category-based attention differentially modulates selective neural processing of face and non-face categories. We combined electroencephalography with a novel frequency-tagging paradigm capable of capturing selective neural responses for multiple visual categories contained within the same rapid image stream (faces/birds in Exp 1; houses/birds in Exp 2). We found that the pattern of attentional enhancement and suppression for face-selective processing is unique compared to other object categories: Where attending to non-face objects strongly enhances their selective neural signals during a later stage of processing (300-500 ms), attentional enhancement of face-selective processing is both earlier and comparatively more modest. Moreover, only the selective neural response for faces appears to be actively suppressed by attending towards an alternate visual category. These results underscore the special status that faces hold within the human visual system, and highlight the utility of visual periodicity as a powerful tool for indexing selective neural processing of multiple visual categories contained within the same image sequence.
Collapse
Affiliation(s)
- Genevieve L Quek
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Westmead Innovation Quarter, 160 Hawkesbury Rd, Westmead NSW 2145, Australia
| | - Adélaïde de Heering
- Unité de Recherche en Neurosciences Cognitives (UNESCOG), ULB Neuroscience Institue (UNI), Center for Research in Cognition & Neurosciences (CRCN), Université libre de Bruxelles (ULB), Avenue Franklin Roosevelt, 50-CP191, 1050 Brussels, Belgium
| |
Collapse
|
7
|
Achour-Benallegue A, Pelletier J, Kaminski G, Kawabata H. Facial icons as indexes of emotions and intentions. Front Psychol 2024; 15:1356237. [PMID: 38807962 PMCID: PMC11132266 DOI: 10.3389/fpsyg.2024.1356237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/02/2024] [Indexed: 05/30/2024] Open
Abstract
Various objects and artifacts incorporate representations of faces, encompassing artworks like portraits, as well as ethnographic or industrial artifacts such as masks or humanoid robots. These representations exhibit diverse degrees of human-likeness, serving different functions and objectives. Despite these variations, they share common features, particularly facial attributes that serve as building blocks for facial expressions-an effective means of communicating emotions. To provide a unified conceptualization for this broad spectrum of face representations, we propose the term "facial icons" drawing upon Peirce's semiotic concepts. Additionally, based on these semiotic principles, we posit that facial icons function as indexes of emotions and intentions, and introduce a significant anthropological theory aligning with our proposition. Subsequently, we support our assertions by examining processes related to face and facial expression perception, as well as sensorimotor simulation processes involved in discerning others' mental states, including emotions. Our argumentation integrates cognitive and experimental evidence, reinforcing the pivotal role of facial icons in conveying mental states.
Collapse
Affiliation(s)
- Amel Achour-Benallegue
- Cognition, Environment and Communication Research Team, Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology, Kashiwa, Japan
| | - Jérôme Pelletier
- Institut Jean Nicod, Département d'études cognitives, ENS, EHESS, CNRS, PSL University, Paris, France
- Department of Philosophy, University of Western Brittany, Brest, France
| | - Gwenaël Kaminski
- Cognition, Langues, Langage, Ergonomie, Université de Toulouse, Toulouse, France
- Institut Universitaire de France, Paris, France
| | - Hideaki Kawabata
- Department of Psychology, Faculty of Letters, Keio University, Tokyo, Japan
| |
Collapse
|
8
|
Bouyer LN, Arnold DH. Deep Aphantasia: a visual brain with minimal influence from priors or inhibitory feedback? Front Psychol 2024; 15:1374349. [PMID: 38646116 PMCID: PMC11026567 DOI: 10.3389/fpsyg.2024.1374349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 04/23/2024] Open
Abstract
The authors are both self-described congenital aphantasics, who feel they have never been able to have volitional imagined visual experiences during their waking lives. In addition, Loren has atypical experiences of a number of visual phenomena that involve an extrapolation or integration of visual information across space. In this perspective, we describe Loren's atypical experiences of a number of visual phenomena, and we suggest these ensue because her visual experiences are not strongly shaped by inhibitory feedback or by prior expectations. We describe Loren as having Deep Aphantasia, and Derek as shallow, as for both a paucity of feedback might prevent the generation of imagined visual experiences, but for Loren this additionally seems to disrupt activity at a sufficiently early locus to cause atypical experiences of actual visual inputs. Our purpose in describing these subjective experiences is to alert others to the possibility of there being sub-classes of congenital aphantasia, one of which-Deep Aphantasia, would be characterized by atypical experiences of actual visual inputs.
Collapse
Affiliation(s)
- Loren N Bouyer
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia
| | - Derek H Arnold
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Collyer L, Ireland J, Susilo T. A limited visual search advantage for illusory faces. Atten Percept Psychophys 2024; 86:717-730. [PMID: 38228847 DOI: 10.3758/s13414-023-02833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
The human visual system is very sensitive to the presence of faces in the environment, so much so that it can produce the perception of illusory faces in everyday objects. Growing research suggests that illusory faces and real faces are processed by similar perceptual and neural mechanisms, but whether this similarity extends to visual attention is less clear. A visual search study showed that illusory faces have a search advantage over objects when the types of objects vary to match the objects in the illusory faces (e.g., chair, pepper, clock) (Keys et al., 2021). Here, we examine whether the search advantage for illusory faces over objects remains when compared against objects that belong to a single category (flowers). In three experiments, we compared visual search of illusory faces, real faces, variable objects, and uniform objects (flowers). Search for real faces was best compared with all other types of targets. In contrast, search for illusory faces was only better than search for variable objects, not uniform objects. This result shows a limited visual search advantage for illusory faces and suggests that illusory faces may not be processed like real faces in visual attention.
Collapse
Affiliation(s)
- Lizzie Collyer
- School of Psychology, Victoria University of Wellington, Kelburn, New Zealand
| | - Jake Ireland
- School of Psychology, Victoria University of Wellington, Kelburn, New Zealand
| | - Tirta Susilo
- School of Psychology, Victoria University of Wellington, Kelburn, New Zealand.
| |
Collapse
|
10
|
Taubert J, Wally S, Dixson BJ. Preliminary evidence of an increased susceptibility to face pareidolia in postpartum women. Biol Lett 2023; 19:20230126. [PMID: 37700700 PMCID: PMC10498352 DOI: 10.1098/rsbl.2023.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
As primates, we are hypersensitive to faces and face-like patterns in the visual environment, hence we often perceive illusory faces in otherwise inanimate objects, such as burnt pieces of toast and the surface of the moon. Although this phenomenon, known as face pareidolia, is a common experience, it is unknown whether our susceptibility to face pareidolia is static across our lifespan or what factors would cause it to change. Given the evidence that behaviour towards face stimuli is modulated by the neuropeptide oxytocin (OT), we reasoned that participants in stages of life associated with high levels of endogenous OT might be more susceptible to face pareidolia than participants in other stages of life. We tested this hypothesis by assessing pareidolia susceptibility in two groups of women; pregnant women (low endogenous OT) and postpartum women (high endogenous OT). We found evidence that postpartum women report seeing face pareidolia more easily than women who are currently pregnant. These data, collected online, suggest that our sensitivity to face-like patterns is not fixed and may change throughout adulthood, providing a crucial proof of concept that requires further research.
Collapse
Affiliation(s)
- Jessica Taubert
- School of Psychology, The University of Queensland, McElwain Building, St Lucia, 4072 Brisbane, Queensland, Australia
| | - Samantha Wally
- School of Psychology, The University of Queensland, McElwain Building, St Lucia, 4072 Brisbane, Queensland, Australia
| | - Barnaby J. Dixson
- School of Psychology, The University of Queensland, McElwain Building, St Lucia, 4072 Brisbane, Queensland, Australia
- Psychology and Social Sciences, The University of Sunshine Coast, Sippy Downs, Australia
| |
Collapse
|
11
|
Romagnano V, Sokolov AN, Fallgatter AJ, Pavlova MA. Do subtle cultural differences sculpt face pareidolia? SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:28. [PMID: 37142598 PMCID: PMC10160123 DOI: 10.1038/s41537-023-00355-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023]
Abstract
Face tuning to non-face images such as shadows or grilled toasts is termed face pareidolia. Face-pareidolia images represent a valuable tool for investigation of social cognition in mental disorders. Here we examined (i) whether, and, if so, how face pareidolia is affected by subtle cultural differences; and (ii) whether this impact is modulated by gender. With this purpose in mind, females and males from Northern Italy were administered a set of Face-n-Thing images, photographs of objects such as houses or waves to a varying degree resembling a face. Participants were presented with pareidolia images with canonical upright orientation and display inversion that heavily affects face pareidolia. In a two-alternative forced-choice paradigm, beholders had to indicate whether each image resembled a face. The outcome was compared with the findings obtained in the Southwest of Germany. With upright orientation, neither cultural background nor gender affected face pareidolia. As expected, display inversion generally mired face pareidolia. Yet, while display inversion led to a drastic reduction of face impression in German males as compared to females, in Italians, no gender differences were found. In a nutshell, subtle cultural differences do not sculpt face pareidolia, but instead affect face impression in a gender-specific way under unusual viewing conditions. Clarification of the origins of these effects requires tailored brain imaging work. Implications for transcultural psychiatry, in particular, for schizophrenia research, are highlighted and discussed.
Collapse
Affiliation(s)
- Valentina Romagnano
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Alexander N Sokolov
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Marina A Pavlova
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany.
| |
Collapse
|
12
|
Pareidolic faces receive prioritized attention in the dot-probe task. Atten Percept Psychophys 2023; 85:1106-1126. [PMID: 36918509 DOI: 10.3758/s13414-023-02685-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Face pareidolia occurs when random or ambiguous inanimate objects are perceived as faces. While real faces automatically receive prioritized attention compared with nonface objects, it is unclear whether pareidolic faces similarly receive special attention. We hypothesized that, given the evolutionary importance of broadly detecting animacy, pareidolic faces may have enough faceness to activate a broad face template, triggering prioritized attention. To test this hypothesis, and to explore where along the faceness continuum pareidolic faces fall, we conducted a series of dot-probe experiments in which we paired pareidolic faces with other images directly competing for attention: objects, animal faces, and human faces. We found that pareidolic faces elicited more prioritized attention than objects, a process that was disrupted by inversion, suggesting this prioritized attention was unlikely to be driven by low-level features. However, unexpectedly, pareidolic faces received more privileged attention compared with animal faces and showed similar prioritized attention to human faces. This attentional efficiency may be due to pareidolic faces being perceived as not only face-like, but also as human-like, and having larger facial features-eyes and mouths-compared with real faces. Together, our findings suggest that pareidolic faces appear automatically attentionally privileged, similar to human faces. Our findings are consistent with the proposal of a highly sensitive broad face detection system that is activated by pareidolic faces, triggering false alarms (i.e., illusory faces), which, evolutionarily, are less detrimental relative to missing potentially relevant signals (e.g., conspecific or heterospecific threats). In sum, pareidolic faces appear "special" in attracting attention.
Collapse
|
13
|
Rossion B, Jacques C, Jonas J. Intracerebral Electrophysiological Recordings to Understand the Neural Basis of Human Face Recognition. Brain Sci 2023; 13:354. [PMID: 36831897 PMCID: PMC9954066 DOI: 10.3390/brainsci13020354] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Understanding how the human brain recognizes faces is a primary scientific goal in cognitive neuroscience. Given the limitations of the monkey model of human face recognition, a key approach in this endeavor is the recording of electrophysiological activity with electrodes implanted inside the brain of human epileptic patients. However, this approach faces a number of challenges that must be overcome for meaningful scientific knowledge to emerge. Here we synthesize a 10 year research program combining the recording of intracerebral activity (StereoElectroEncephaloGraphy, SEEG) in the ventral occipito-temporal cortex (VOTC) of large samples of participants and fast periodic visual stimulation (FPVS), to objectively define, quantify, and characterize the neural basis of human face recognition. These large-scale studies reconcile the wide distribution of neural face recognition activity with its (right) hemispheric and regional specialization and extend face-selectivity to anterior regions of the VOTC, including the ventral anterior temporal lobe (VATL) typically affected by magnetic susceptibility artifacts in functional magnetic resonance imaging (fMRI). Clear spatial dissociations in category-selectivity between faces and other meaningful stimuli such as landmarks (houses, medial VOTC regions) or written words (left lateralized VOTC) are found, confirming and extending neuroimaging observations while supporting the validity of the clinical population tested to inform about normal brain function. The recognition of face identity - arguably the ultimate form of recognition for the human brain - beyond mere differences in physical features is essentially supported by selective populations of neurons in the right inferior occipital gyrus and the lateral portion of the middle and anterior fusiform gyrus. In addition, low-frequency and high-frequency broadband iEEG signals of face recognition appear to be largely concordant in the human association cortex. We conclude by outlining the challenges of this research program to understand the neural basis of human face recognition in the next 10 years.
Collapse
Affiliation(s)
- Bruno Rossion
- CNRS, CRAN, Université de Lorraine, F-54000 Nancy, France
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, F-54000 Nancy, France
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
| | - Corentin Jacques
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
| | - Jacques Jonas
- CNRS, CRAN, Université de Lorraine, F-54000 Nancy, France
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, F-54000 Nancy, France
| |
Collapse
|
14
|
Palmisano A, Chiarantoni G, Bossi F, Conti A, D'Elia V, Tagliente S, Nitsche MA, Rivolta D. Face pareidolia is enhanced by 40 Hz transcranial alternating current stimulation (tACS) of the face perception network. Sci Rep 2023; 13:2035. [PMID: 36739325 PMCID: PMC9899232 DOI: 10.1038/s41598-023-29124-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Pareidolia refers to the perception of ambiguous sensory patterns as carrying a specific meaning. In its most common form, pareidolia involves human-like facial features, where random objects or patterns are illusionary recognized as faces. The current study investigated the neurophysiological correlates of face pareidolia via transcranial alternating current stimulation (tACS). tACS was delivered at gamma (40 Hz) frequency over critical nodes of the "face perception" network (i.e., right lateral occipito-temporal and left prefrontal cortex) of 75 healthy participants while completing four face perception tasks ('Mooney test' for faces, 'Toast test', 'Noise pareidolia test', 'Pareidolia task') and an object perception task ('Mooney test' for objects). In this single-blind, sham-controlled between-subjects study, participants received 35 min of either Sham, Online, (40Hz-tACS_ON), or Offline (40Hz-tACS_PRE) stimulation. Results showed that face pareidolia was causally enhanced by 40Hz-tACS_PRE in the Mooney test for faces in which, as compared to sham, participants more often misperceived scrambled stimuli as faces. In addition, as compared to sham, participants receiving 40Hz-tACS_PRE showed similar reaction times (RTs) when perceiving illusory faces and correctly recognizing noise stimuli in the Toast test, thus not exhibiting hesitancy in identifying faces where there were none. Also, 40Hz-tACS_ON induced slower rejections of face pareidolia responses in the Noise pareidolia test. The current study indicates that 40 Hz tACS can enhance pareidolic illusions in healthy individuals and, thus, that high frequency (i.e., gamma band) oscillations are critical in forming coherent and meaningful visual perception.
Collapse
Affiliation(s)
- Annalisa Palmisano
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy.
| | - Giulio Chiarantoni
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | | | - Alessio Conti
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Vitiana D'Elia
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Serena Tagliente
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors (IfADo), Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Davide Rivolta
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy.,School of Psychology, University of East London (UEL), London, UK
| |
Collapse
|
15
|
Romagnano V, Sokolov AN, Steinwand P, Fallgatter AJ, Pavlova MA. Face pareidolia in male schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:112. [PMID: 36517504 PMCID: PMC9751144 DOI: 10.1038/s41537-022-00315-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 05/22/2023]
Abstract
Faces are valuable signals for efficient social interaction. Yet, social cognition including the sensitivity to a coarse face scheme may be deviant in schizophrenia (SZ). Tuning to faces in non-face images such as shadows, grilled toasts, or ink blots is termed face pareidolia. This phenomenon is poorly investigated in SZ. Here face tuning was assessed in 44 male participants with SZ and person-by-person matched controls by using recently created Face-n-Thing images (photographs of non-face objects to a varying degree resembling a face). The advantage of these images is that single components do not automatically trigger face processing. Participants were administered a set of images with upright and inverted (180° in the image plane) orientation. In a two-alternative forced-choice paradigm, they had to indicate whether an image resembled a face. The findings showed that: (i) With upright orientation, SZ patients exhibited deficits in face tuning: they provided much fewer face responses than controls. (ii) Inversion generally hindered face pareidolia. However, while in neurotypical males, inversion led to a drastic drop in face impression, in SZ, the impact of orientation was reduced. (iii) Finally, in accord with the signal detection theory analysis, the sensitivity index (d-prime) was lower in SZ, whereas no difference occurred in decision criterion. The outcome suggests altered face pareidolia in SZ is caused by lower face sensitivity rather than by alterations in cognitive bias. Comparison of these findings with earlier evidence confirms that tuning to social signals is lower in SZ, and warrants tailored brain imaging research.
Collapse
Affiliation(s)
- Valentina Romagnano
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, and Tübingen Center for Mental Health (TüCMH), Tübingen, Germany
| | - Alexander N Sokolov
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, and Tübingen Center for Mental Health (TüCMH), Tübingen, Germany
| | - Patrick Steinwand
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, and Tübingen Center for Mental Health (TüCMH), Tübingen, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, and Tübingen Center for Mental Health (TüCMH), Tübingen, Germany
| | - Marina A Pavlova
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, and Tübingen Center for Mental Health (TüCMH), Tübingen, Germany.
| |
Collapse
|
16
|
Bellemare-Pepin A, Harel Y, O’Byrne J, Mageau G, Dietrich A, Jerbi K. Processing visual ambiguity in fractal patterns: Pareidolia as a sign of creativity. iScience 2022; 25:105103. [PMID: 36164655 PMCID: PMC9508550 DOI: 10.1016/j.isci.2022.105103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/18/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Creativity is a highly valued and beneficial skill that empirical research typically probes using "divergent thinking" (DT) tasks such as problem solving and novel idea generation. Here, in contrast, we examine the perceptual aspect of creativity by asking whether creative individuals are more likely to perceive recognizable forms in ambiguous stimuli -a phenomenon known as pareidolia. To this end, we designed a visual task in which participants were asked to identify as many recognizable forms as possible in cloud-like fractal images. We found that pareidolic perceptions arise more often and more rapidly in highly creative individuals. Furthermore, high-creatives report pareidolia across a broader range of image contrasts and fractal dimensions than do low creatives. These results extend the established body of work on DT by introducing divergent perception as a complementary manifestation of the creative mind, thus clarifying the perception-creation link while opening new paths for studying creative behavior in humans.
Collapse
Affiliation(s)
- Antoine Bellemare-Pepin
- Department of Psychology, Université de Montréal, Montréal, H2V 2S9 Québec, Canada
- Department of Music, Concordia University, Montréal, H4B1R6 Québec, Canada
| | - Yann Harel
- Department of Psychology, Université de Montréal, Montréal, H2V 2S9 Québec, Canada
| | - Jordan O’Byrne
- Department of Psychology, Université de Montréal, Montréal, H2V 2S9 Québec, Canada
| | - Geneviève Mageau
- Department of Psychology, Université de Montréal, Montréal, H2V 2S9 Québec, Canada
| | - Arne Dietrich
- Department of Psychology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Karim Jerbi
- Department of Psychology, Université de Montréal, Montréal, H2V 2S9 Québec, Canada
- MILA (Quebec Artificial Intelligence Institute), Montreal, Quebec, Canada
- UNIQUE Center (Quebec Neuro-AI Research Center), Montreal, Quebec, Canada
| |
Collapse
|
17
|
Rossion B. Twenty years of investigation with the case of prosopagnosia PS to understand human face identity recognition. Part I: Function. Neuropsychologia 2022; 173:108278. [DOI: 10.1016/j.neuropsychologia.2022.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/28/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
18
|
Rekow D, Baudouin JY, Durand K, Leleu A. Smell what you hardly see: Odors assist visual categorization in the human brain. Neuroimage 2022; 255:119181. [PMID: 35413443 DOI: 10.1016/j.neuroimage.2022.119181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/06/2022] [Accepted: 04/04/2022] [Indexed: 01/23/2023] Open
Abstract
Visual categorization is the brain ability to rapidly and automatically respond to a certain category of inputs. Whether category-selective neural responses are purely visual or can be influenced by other sensory modalities remains unclear. Here, we test whether odors modulate visual categorization, expecting that odors facilitate the neural categorization of congruent visual objects, especially when the visual category is ambiguous. Scalp electroencephalogram (EEG) was recorded while natural images depicting various objects were displayed in rapid 12-Hz streams (i.e., 12 images / second) and variable exemplars of a target category (either human faces, cars, or facelike objects in dedicated sequences) were interleaved every 9th stimulus to tag category-selective responses at 12/9 = 1.33 Hz in the EEG frequency spectrum. During visual stimulation, participants (N = 26) were implicitly exposed to odor contexts (either body, gasoline or baseline odors) and performed an orthogonal cross-detection task. We identify clear category-selective responses to every category over the occipito-temporal cortex, with the largest response for human faces and the lowest for facelike objects. Critically, body odor boosts the response to the ambiguous facelike objects (i.e., either perceived as nonface objects or faces) over the right hemisphere, especially for participants reporting their presence post-stimulation. By contrast, odors do not significantly modulate other category-selective responses, nor the general visual response recorded at 12 Hz, revealing a specific influence on the categorization of congruent ambiguous stimuli. Overall, these findings support the view that the brain actively uses cues from the different senses to readily categorize visual inputs, and that olfaction, which has long been considered as poorly functional in humans, is well placed to disambiguate visual information.
Collapse
Affiliation(s)
- Diane Rekow
- Development of Olfactory Communication & Cognition Lab, Center for Taste, Smell & Feeding Behavior, Université Bourgogne Franche-Comté, CNRS, Inrae, Institut Agro Dijon, 21000, Dijon, France.
| | - Jean-Yves Baudouin
- Laboratoire Développement, Individu, Processus, Handicap, Éducation (DIPHE), Département Psychologie du Développement, de l'Éducation et des Vulnérabilités (PsyDÉV), Institut de psychologie, Université de Lyon (Lumière Lyon 2), 5, avenue Pierre-Mendès-France, 69676, Bron, France
| | - Karine Durand
- Development of Olfactory Communication & Cognition Lab, Center for Taste, Smell & Feeding Behavior, Université Bourgogne Franche-Comté, CNRS, Inrae, Institut Agro Dijon, 21000, Dijon, France
| | - Arnaud Leleu
- Development of Olfactory Communication & Cognition Lab, Center for Taste, Smell & Feeding Behavior, Université Bourgogne Franche-Comté, CNRS, Inrae, Institut Agro Dijon, 21000, Dijon, France.
| |
Collapse
|