1
|
Harting C, Hehemann L, Stetza L, Kayser C. Respiration shapes response speed and accuracy with a systematic time lag. Proc Biol Sci 2025; 292:20242566. [PMID: 40199358 PMCID: PMC11978463 DOI: 10.1098/rspb.2024.2566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/17/2025] [Accepted: 02/20/2025] [Indexed: 04/10/2025] Open
Abstract
Sensory-cognitive functions are intertwined with physiological processes such as the heart beat or respiration. For example, we tend to align our respiratory cycle to expected events or actions. This happens during sports but also in computer-based tasks and systematically structures respiratory phase around relevant events. However, studies also show that trial-by-trial variations in respiratory phase shape brain activity and the speed or accuracy of individual responses. We show that both phenomena-the alignment of respiration to expected events and the explanatory power of the respiratory phase on behaviour-co-exist. In fact, both the average respiratory phase of an individual relative to the experimental trials and trial-to-trial variations in respiratory phase hold significant predictive power on behavioural performance, in particular for reaction times. This co-modulation of respiration and behaviour emerges regardless of whether an individual generally breathes faster or slower and is strongest for the respiratory phase about 2 s prior to participant's responses. The persistence of these effects across 12 datasets with 277 participants performing sensory-cognitive tasks confirms the robustness of these results, and suggests a profound and time-lagged influence of structured respiration on sensory-motor responses.
Collapse
Affiliation(s)
| | - Lena Hehemann
- Biology, Bielefeld University, Bielefeld33615, Germany
| | - Lisa Stetza
- Biology, Bielefeld University, Bielefeld33615, Germany
| | | |
Collapse
|
2
|
Kayser C, Heuer H. Perceived Multisensory Common Cause Relations Shape the Ventriloquism Effect but Only Marginally the Trial-Wise Aftereffect. Eur J Neurosci 2025; 61:e70015. [PMID: 39935275 PMCID: PMC11815316 DOI: 10.1111/ejn.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
Combining multisensory cues is fundamental for perception and action and reflected by two frequently studied phenomena: multisensory integration and sensory recalibration. In the context of audio-visual spatial signals, these phenomena are exemplified by the ventriloquism effect and its aftereffect. The ventriloquism effect occurs when the perceived location of a sound is biased by a concurrent visual stimulus, while the aftereffect manifests as a recalibration of perceived sound location after exposure to spatially discrepant stimuli. The relationship between these processes-whether recalibration is a direct consequence of integration or operates independently-remains debated. We investigate the role of causal inference in these processes by examining whether trial-wise judgements about a common-cause underlying audio-visual stimuli influence both the ventriloquism effect and the immediate aftereffect. In a spatial paradigm, participants made explicit judgements about the common cause of stimulus pairs, and their influence on both perceptual biases was assessed. Results obtained across two experiments indicate that while multisensory integration is contingent on common cause judgements, the immediate recalibration effect is not. This suggests that recalibration can occur independently of the perceived commonality of the multisensory stimuli, challenging the notion that recalibration is solely a by-product of integration.
Collapse
Affiliation(s)
- Christoph Kayser
- Department of Cognitive NeuroscienceUniversität BielefeldBielefeldGermany
| | - Herbert Heuer
- Department of Cognitive NeuroscienceUniversität BielefeldBielefeldGermany
- Leibniz Research Centre for Working Environment and Human FactorsDortmundGermany
| |
Collapse
|
3
|
Kayser C, Debats N, Heuer H. Both stimulus-specific and configurational features of multiple visual stimuli shape the spatial ventriloquism effect. Eur J Neurosci 2024; 59:1770-1788. [PMID: 38230578 DOI: 10.1111/ejn.16251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024]
Abstract
Studies on multisensory perception often focus on simplistic conditions in which one single stimulus is presented per modality. Yet, in everyday life, we usually encounter multiple signals per modality. To understand how multiple signals within and across the senses are combined, we extended the classical audio-visual spatial ventriloquism paradigm to combine two visual stimuli with one sound. The individual visual stimuli presented in the same trial differed in their relative timing and spatial offsets to the sound, allowing us to contrast their individual and combined influence on sound localization judgements. We find that the ventriloquism bias is not dominated by a single visual stimulus but rather is shaped by the collective multisensory evidence. In particular, the contribution of an individual visual stimulus to the ventriloquism bias depends not only on its own relative spatio-temporal alignment to the sound but also the spatio-temporal alignment of the other visual stimulus. We propose that this pattern of multi-stimulus multisensory integration reflects the evolution of evidence for sensory causal relations during individual trials, calling for the need to extend established models of multisensory causal inference to more naturalistic conditions. Our data also suggest that this pattern of multisensory interactions extends to the ventriloquism aftereffect, a bias in sound localization observed in unisensory judgements following a multisensory stimulus.
Collapse
Affiliation(s)
- Christoph Kayser
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany
| | - Nienke Debats
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany
| | - Herbert Heuer
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
4
|
O'Donohue M, Lacherez P, Yamamoto N. Audiovisual spatial ventriloquism is reduced in musicians. Hear Res 2023; 440:108918. [PMID: 37992516 DOI: 10.1016/j.heares.2023.108918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
There is great scientific and public interest in claims that musical training improves general cognitive and perceptual abilities. While this is controversial, recent and rather convincing evidence suggests that musical training refines the temporal integration of auditory and visual stimuli at a general level. We investigated whether musical training also affects integration in the spatial domain, via an auditory localisation experiment that measured ventriloquism (where localisation is biased towards visual stimuli on audiovisual trials) and recalibration (a unimodal localisation aftereffect). While musicians (n = 22) and non-musicians (n = 22) did not have significantly different unimodal precision or accuracy, musicians were significantly less susceptible than non-musicians to ventriloquism, with large effect sizes. We replicated these results in another experiment with an independent sample of 24 musicians and 21 non-musicians. Across both experiments, spatial recalibration did not significantly differ between the groups even though musicians resisted ventriloquism. Our results suggest that the multisensory expertise afforded by musical training refines spatial integration, a process that underpins multisensory perception.
Collapse
Affiliation(s)
- Matthew O'Donohue
- Queensland University of Technology (QUT), School of Psychology and Counselling, Kelvin Grove, QLD 4059, Australia.
| | - Philippe Lacherez
- Queensland University of Technology (QUT), School of Psychology and Counselling, Kelvin Grove, QLD 4059, Australia
| | - Naohide Yamamoto
- Queensland University of Technology (QUT), School of Psychology and Counselling, Kelvin Grove, QLD 4059, Australia; Queensland University of Technology (QUT), Centre for Vision and Eye Research, Kelvin Grove, QLD 4059, Australia
| |
Collapse
|
5
|
Debats NB, Heuer H, Kayser C. Different time scales of common-cause evidence shape multisensory integration, recalibration and motor adaptation. Eur J Neurosci 2023; 58:3253-3269. [PMID: 37461244 DOI: 10.1111/ejn.16095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/03/2023] [Indexed: 09/05/2023]
Abstract
Perceptual coherence in the face of discrepant multisensory signals is achieved via the processes of multisensory integration, recalibration and sometimes motor adaptation. These supposedly operate on different time scales, with integration reducing immediate sensory discrepancies and recalibration and motor adaptation reflecting the cumulative influence of their recent history. Importantly, whether discrepant signals are bound during perception is guided by the brains' inference of whether they originate from a common cause. When combined, these two notions lead to the hypothesis that the time scales on which integration and recalibration (or motor adaptation) operate are associated with different time scales of evidence about a common cause underlying two signals. We tested this prediction in a well-established visuo-motor paradigm, in which human participants performed visually guided hand movements. The kinematic correlation between hand and cursor movements indicates their common origin, which allowed us to manipulate the common-cause evidence by titrating this correlation. Specifically, we dissociated hand and cursor signals during individual movements while preserving their correlation across the series of movement endpoints. Following our hypothesis, this manipulation reduced integration compared with a condition in which visual and proprioceptive signals were perfectly correlated. In contrast, recalibration and motor adaption were not affected by this manipulation. This supports the notion that multisensory integration and recalibration deal with sensory discrepancies on different time scales guided by common-cause evidence: Integration is prompted by local common-cause evidence and reduces immediate discrepancies, whereas recalibration and motor adaptation are prompted by global common-cause evidence and reduce persistent discrepancies.
Collapse
Affiliation(s)
- Nienke B Debats
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany
| | - Herbert Heuer
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Christoph Kayser
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany
| |
Collapse
|
6
|
Kayser C, Park H, Heuer H. Cumulative multisensory discrepancies shape the ventriloquism aftereffect but not the ventriloquism bias. PLoS One 2023; 18:e0290461. [PMID: 37607201 PMCID: PMC10443876 DOI: 10.1371/journal.pone.0290461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Multisensory integration and recalibration are two processes by which perception deals with discrepant signals. Both are often studied in the spatial ventriloquism paradigm. There, integration is probed by the presentation of discrepant audio-visual stimuli, while recalibration manifests as an aftereffect in subsequent judgements of unisensory sounds. Both biases are typically quantified against the degree of audio-visual discrepancy, reflecting the possibility that both may arise from common underlying multisensory principles. We tested a specific prediction of this: that both processes should also scale similarly with the history of multisensory discrepancies, i.e. the sequence of discrepancies in several preceding audio-visual trials. Analyzing data from ten experiments with randomly varying spatial discrepancies we confirmed the expected dependency of each bias on the immediately presented discrepancy. And in line with the aftereffect being a cumulative process, this scaled with the discrepancies presented in at least three preceding audio-visual trials. However, the ventriloquism bias did not depend on this three-trial history of multisensory discrepancies and also did not depend on the aftereffect biases in previous trials - making these two multisensory processes experimentally dissociable. These findings support the notion that the ventriloquism bias and the aftereffect reflect distinct functions, with integration maintaining a stable percept by reducing immediate sensory discrepancies and recalibration maintaining an accurate percept by accounting for consistent discrepancies.
Collapse
Affiliation(s)
- Christoph Kayser
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany
| | - Hame Park
- Department of Neurophysiology & Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Herbert Heuer
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
7
|
Kirsch W, Kunde W. Changes in body perception following virtual object manipulation are accompanied by changes of the internal reference scale. Sci Rep 2023; 13:7137. [PMID: 37130888 PMCID: PMC10154308 DOI: 10.1038/s41598-023-34311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/27/2023] [Indexed: 05/04/2023] Open
Abstract
Changes in body perception often arise when observers are confronted with related yet discrepant multisensory signals. Some of these effects are interpreted as outcomes of sensory integration of various signals, whereas related biases are ascribed to learning-dependent recalibration of coding individual signals. The present study explored whether the same sensorimotor experience entails changes in body perception that are indicative of multisensory integration and those that indicate recalibration. Participants enclosed visual objects by a pair of visual cursors controlled by finger movements. Then either they judged their perceived finger posture (indicating multisensory integration) or they produced a certain finger posture (indicating recalibration). An experimental variation of the size of the visual object resulted in systematic and opposite biases of the perceived and produced finger distances. This pattern of results is consistent with the assumption that multisensory integration and recalibration had a common origin in the task we used.
Collapse
Affiliation(s)
- Wladimir Kirsch
- Department of Psychology, University of Würzburg, Röntgenring 11, 97070, Würzburg, Germany.
| | - Wilfried Kunde
- Department of Psychology, University of Würzburg, Röntgenring 11, 97070, Würzburg, Germany
| |
Collapse
|
8
|
Debats NB, Heuer H, Kayser C. Short-term effects of visuomotor discrepancies on multisensory integration, proprioceptive recalibration, and motor adaptation. J Neurophysiol 2023; 129:465-478. [PMID: 36651909 DOI: 10.1152/jn.00478.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Information about the position of our hand is provided by multisensory signals that are often not perfectly aligned. Discrepancies between the seen and felt hand position or its movement trajectory engage the processes of 1) multisensory integration, 2) sensory recalibration, and 3) motor adaptation, which adjust perception and behavioral responses to apparently discrepant signals. To foster our understanding of the coemergence of these three processes, we probed their short-term dependence on multisensory discrepancies in a visuomotor task that has served as a model for multisensory perception and motor control previously. We found that the well-established integration of discrepant visual and proprioceptive signals is tied to the immediate discrepancy and independent of the outcome of the integration of discrepant signals in immediately preceding trials. However, the strength of integration was context dependent, being stronger in an experiment featuring stimuli that covered a smaller range of visuomotor discrepancies (±15°) compared with one covering a larger range (±30°). Both sensory recalibration and motor adaptation for nonrepeated movement directions were absent after two bimodal trials with same or opposite visuomotor discrepancies. Hence our results suggest that short-term sensory recalibration and motor adaptation are not an obligatory consequence of the integration of preceding discrepant multisensory signals.NEW & NOTEWORTHY The functional relation between multisensory integration and recalibration remains debated. We here refute the notion that they coemerge in an obligatory manner and support the hypothesis that they serve distinct goals of perception.
Collapse
Affiliation(s)
- Nienke B Debats
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany
| | - Herbert Heuer
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany.,Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Christoph Kayser
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany
| |
Collapse
|
9
|
Quintero SI, Shams L, Kamal K. Changing the Tendency to Integrate the Senses. Brain Sci 2022; 12:1384. [PMID: 36291318 PMCID: PMC9599885 DOI: 10.3390/brainsci12101384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Integration of sensory signals that emanate from the same source, such as the visual of lip articulations and the sound of the voice of a speaking individual, can improve perception of the source signal (e.g., speech). Because momentary sensory inputs are typically corrupted with internal and external noise, there is almost always a discrepancy between the inputs, facing the perceptual system with the problem of determining whether the two signals were caused by the same source or different sources. Thus, whether or not multisensory stimuli are integrated and the degree to which they are bound is influenced by factors such as the prior expectation of a common source. We refer to this factor as the tendency to bind stimuli, or for short, binding tendency. In theory, the tendency to bind sensory stimuli can be learned by experience through the acquisition of the probabilities of the co-occurrence of the stimuli. It can also be influenced by cognitive knowledge of the environment. The binding tendency varies across individuals and can also vary within an individual over time. Here, we review the studies that have investigated the plasticity of binding tendency. We discuss the protocols that have been reported to produce changes in binding tendency, the candidate learning mechanisms involved in this process, the possible neural correlates of binding tendency, and outstanding questions pertaining to binding tendency and its plasticity. We conclude by proposing directions for future research and argue that understanding mechanisms and recipes for increasing binding tendency can have important clinical and translational applications for populations or individuals with a deficiency in multisensory integration.
Collapse
Affiliation(s)
- Saul I. Quintero
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| | - Ladan Shams
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90089, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA 90089, USA
| | - Kimia Kamal
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|