1
|
Li L, Wu J, Cao G, Yao J, Miao Y, Zhuang Y, Xiang Y, Zhong X, Liu Y, Chen F, Dai Y, Dai Y, Xu X, Zhang Q. Egg-driven immunosuppression and granuloma zonation in Peyer's patches of mice with Schistosoma japonicum infection. Front Cell Infect Microbiol 2025; 15:1587166. [PMID: 40365538 PMCID: PMC12070193 DOI: 10.3389/fcimb.2025.1587166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/04/2025] [Indexed: 05/15/2025] Open
Abstract
Egg granulomas caused by Schistosoma japonicum (S. japonicum) are important causes of morbidity and mortality in schistosomiasis. The intestine plays a crucial role in the complete life cycle of S. japonicum; eggs are transported through the intestine and excreted with feces. During this process, the interaction between the eggs and the intestine can trigger a strong intestinal immune system response and cause inflammation. Eggs in the intestine preferentially accumulate in Peyer's patches (PPs). However, the cellular composition of intestinal granulomas and the impacts of egg deposition on the immune function of PPs remain poorly understood. Using a mouse model of S. japonicum infection, we revealed that the deposition of eggs disrupted the structure of PPs, resulting in immunosuppression. We further characterized the cellular composition of intestinal granulomas, revealing a layered distribution of neutrophils, macrophages, T cells, and B cells, with marked neutrophil accumulation. Single-cell RNA sequencing revealed that egg deposition drives B-cell apoptosis, T-cell exhaustion, and activation of fibrotic pathways in myeloid cells, collectively impairing PP function. In conclusion, the layered cellular architecture of intestinal granulomas in PPs suggests a unique immune microenvironment of egg-driven immunosuppression and fibrotic remodeling, and the identification of fibrotic pathways in myeloid cells provides a potential therapeutic target to alleviate fibrosis in patients with S. japonicum infection.
Collapse
Affiliation(s)
- Linzhu Li
- Laboratory of Molecular Parasitology, State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Key Laboratory of Pathogen-Host Interaction (Tongji University), Ministry of Education, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, China
| | - Jing Wu
- Laboratory of Molecular Parasitology, State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Key Laboratory of Pathogen-Host Interaction (Tongji University), Ministry of Education, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, China
| | - Guangxu Cao
- Department of Gynecology, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Jiakai Yao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yanping Miao
- The Fifth People’s Hospital of Jiangxi Province, Nanchang, Jiangxi, China
| | - Yanglin Zhuang
- Jiangxi Provincial Blood Center, Nanchang, Jiangxi, China
| | - Yushen Xiang
- Laboratory of Molecular Parasitology, State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Key Laboratory of Pathogen-Host Interaction (Tongji University), Ministry of Education, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, China
| | - Xiaolin Zhong
- Laboratory of Molecular Parasitology, State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Key Laboratory of Pathogen-Host Interaction (Tongji University), Ministry of Education, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, China
| | - Yicong Liu
- Laboratory of Molecular Parasitology, State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Key Laboratory of Pathogen-Host Interaction (Tongji University), Ministry of Education, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, China
| | - Fubo Chen
- Department of Medical Ultrasound and Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Yalei Dai
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, and Department of Immunology and Microbiology, Tongji University School of Medicine, Shanghai, China
| | - Yang Dai
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Xindong Xu
- Laboratory of Molecular Parasitology, State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Key Laboratory of Pathogen-Host Interaction (Tongji University), Ministry of Education, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, China
| | - Qingfeng Zhang
- Laboratory of Molecular Parasitology, State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Key Laboratory of Pathogen-Host Interaction (Tongji University), Ministry of Education, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Biersteker R, Larsen OF, Wuhrer M, Huizinga TWJ, Toes REM, Hafkenscheid L. Variable domain glycosylation as a marker and modulator of immune responses: Insights into autoimmunity and B-cell malignancies. Semin Immunol 2025; 78:101946. [PMID: 40158366 DOI: 10.1016/j.smim.2025.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Glycosylation of antibodies is essential for shaping immune responses, as it contributes significantly to antibody function and diversity. While immunoglobulin G (IgG) Fc glycosylation is well-characterized, variable domain glycosylation (VDG) introduces an additional and less understood layer of complexity. Notably, VDG is associated with rheumatoid arthritis, where disease-specific IgG autoantibodies abundantly express this modification. Moreover, its presence on these antibodies correlates with disease progression in at-risk individuals and therapeutic outcomes. Emerging evidence links increased VDG levels to other autoimmune diseases and B-cell malignancies, highlighting its potential as both a marker and modulator in disease onset and progression. Importantly, VDG on IgG is now recognized to influence antigen binding, enhance antibody stability, and modulate interactions with the human neonatal Fc receptor. In addition, glycans in the antigen-binding domains of autoreactive B-cell receptors (BCRs) can significantly impact B cell activation. In follicular lymphoma and other B-cell malignancies, the presence of N-glycosylation sites in the immunoglobulin variable domains leads to the introduction of oligomannose glycans, which are postulated to bind to mannose-specific lectins. This interaction might promote antigen-independent activation of BCRs, thereby supporting malignant B cell survival and proliferation. Here, we explore the regulatory pathways of VDG and its functional roles across both physiological and pathological conditions, underscoring its prevalence and significance in various autoimmune diseases and B-cell malignancies. Ultimately, advancing our understanding of the regulatory factors influencing VDG and its functional implications could be highly rewarding for identifying potential therapeutic targets and strategies to prevent and treat autoimmune diseases and B-cell malignancies.
Collapse
Affiliation(s)
- Roxane Biersteker
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Oliver F Larsen
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Lise Hafkenscheid
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
3
|
Staniek J, Rizzi M. Signaling Activation and Modulation in Extrafollicular B Cell Responses. Immunol Rev 2025; 330:e70004. [PMID: 39917832 PMCID: PMC11803499 DOI: 10.1111/imr.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
The differentiation of naive follicular B cells into either the germinal center (GC) or extrafollicular (EF) pathway plays a critical role in shaping the type, affinity, and longevity of effector B cells. This choice also governs the selection and survival of autoreactive B cells, influencing their potential to enter the memory compartment. During the first 2-3 days following antigen encounter, initially activated B cells integrate activating signals from T cells, Toll-like receptors (TLRs), and cytokines, alongside inhibitory signals mediated by inhibitory receptors. This integration modulates the intensity of signaling, particularly of the PI3K/AKT/mTOR pathway, which plays a central role in guiding developmental decisions. These early signaling events determine whether B cells undergo GC maturation or differentiate rapidly into antibody-secreting cells (ASCs) via the EF pathway. Dysregulation of these signaling pathways-whether through excessive activation or defective regulatory mechanisms-can disrupt the balance between GC and EF fates, predisposing individuals to autoimmunity. Accordingly, aberrant PI3K/AKT/mTOR signaling has been implicated in the defective selection of autoreactive B cells, increasing the risk of autoimmune disease. This review focuses on the signaling events in newly activated B cells, with an emphasis on the induction and regulation of the PI3K/AKT/mTOR pathway. It also highlights gaps in our understanding of how alternative B cell fates are regulated. Both the physiological context and the implications of inborn errors of immunity (IEIs) and complex autoimmune conditions will be discussed in this regard.
Collapse
Affiliation(s)
- Julian Staniek
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of Medicine, Center for Chronic Immunodeficiency, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of Medicine, Center for Chronic Immunodeficiency, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- CIBSS—Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| |
Collapse
|
4
|
Sun J, Shi X, Wang M, He M, Yang W, Song L. NCAM1-SHIP2 axis upon recognizing microbes inhibits the expressions of inflammatory factors through P38-H3K4me and P38-NF-κB pathways in oyster. Cell Commun Signal 2025; 23:102. [PMID: 39979940 PMCID: PMC11841013 DOI: 10.1186/s12964-025-02087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
Neural cell adhesion molecule 1 (NCAM1/CD56) as a well-known surface marker for natural killer (NK) cells plays important roles in cell migration, adhesion, and inflammation. In the present study, NCAM1 homolog containingthree immunoglobulin domains, one fibronectin type 3 domain, a transmembrane region and a cytoplasmic tail with two intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) was identified from the Pacific oyster, Crassostrea gigas (defined as CgNCAM1). The mRNA transcripts of CgNCAM1 were highly expressed in haemocytes. The mRNA expressions of CgNCAM1 in haemocytes increased significantly after Vibrio splendidus stimulation. The positive green signals of CgNCAM1 and SH2-containing inositol 5-phosphatase (CgSHIP2) could translocate onto the haemocyte membrane after V. splendidus stimulation. The recombinant extracellular domains of CgNCAM1 exhibited binding activity towards various pathogen-associated molecular patterns (PAMPs) and microbes. Upon binding to its ligands, CgNCAM1 recruited CgSHIP2 to transduce inhibitor signals to reduce the phosphorylation of CgP38. The inhibition of CgP38 reduced the methylation of histone H3K4 and nuclear translocation of NF-κB, which eventually inhibited the mRNA expressions of inflammatory factors (CgIL17-2/3/6 and CgTNF-2) to suppress inflammation. These results suggested that CgNCAM1 could function as an immune checkpoint to sense different PAMPs and microbes and reduce the inflammation through inhibiting P38-epigenetic and P38-NF-κB pathways in oysters.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
- Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China.
| | - Xiangqi Shi
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Mengjia Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Muchun He
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
- Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China.
| |
Collapse
|
5
|
Yin K, Zhao M, Xu Y, Zheng Z, Huang S, Liang D, Dong H, Guo Y, Lin L, Song J, Zhang H, Zheng J, Zhu Z, Yang C. Well-Paired-Seq2: High-Throughput and High-Sensitivity Strategy for Characterizing Low RNA-Content Cell/Nucleus Transcriptomes. Anal Chem 2024; 96:6301-6310. [PMID: 38597061 DOI: 10.1021/acs.analchem.3c05785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) is a transformative technology that unravels the intricate cellular state heterogeneity. However, the Poisson-dependent cell capture and low sensitivity in scRNA-seq methods pose challenges for throughput and samples with a low RNA-content. Herein, to address these challenges, we present Well-Paired-Seq2 (WPS2), harnessing size-exclusion and quasi-static hydrodynamics for efficient cell capture. WPS2 exploits molecular crowding effect, tailing activity enhancement in reverse transcription, and homogeneous enzymatic reaction in the initial bead-based amplification to achieve 3116 genes and 8447 transcripts with an average of ∼20000 reads per cell. WPS2 detected 1420 more genes and 4864 more transcripts than our previous Well-Paired-Seq. It sensitively characterizes transcriptomes of low RNA-content single cells and nuclei, overcoming the Poisson limit for cell and barcoded bead capture. WPS2 also profiles transcriptomes from frozen clinical samples, revealing heterogeneous tumor copy number variations and intercellular crosstalk in clear cell renal cell carcinomas. Additionally, we provide the first single-cell-level characterization of rare metanephric adenoma (MA) and uncover potential specific markers. With the advantages of high sensitivity and high throughput, WPS2 holds promise for diverse basic and clinical research.
Collapse
Affiliation(s)
- Kun Yin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Meijuan Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yiling Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhong Zheng
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Shanqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Dianyi Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - He Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Ye Guo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Li Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jia Song
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Huimin Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Junhua Zheng
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Zhi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200120, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
6
|
Guo Y, Li X, Xie Y, Wang Y. What influences the activity of Degrader-Antibody conjugates (DACs). Eur J Med Chem 2024; 268:116216. [PMID: 38387330 DOI: 10.1016/j.ejmech.2024.116216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
The targeted protein degradation (TPD) technology employing proteolysis-targeting chimeras (PROTACs) has been widely applied in drug chemistry and chemical biology for the treatment of cancer and other diseases. PROTACs have demonstrated significant advantages in targeting undruggable targets and overcoming drug resistance. However, despite the efficient degradation of targeted proteins achieved by PROTACs, they still face challenges related to selectivity between normal and cancer cells, as well as issues with poor membrane permeability due to their substantial molecular weight. Additionally, the noteworthy toxicity resulting from off-target effects also needs to be addressed. To solve these issues, Degrader-Antibody Conjugates (DACs) have been developed, leveraging the targeting and internalization capabilities of antibodies. In this review, we elucidates the characteristics and distinctions between DACs, and traditional Antibody-drug conjugates (ADCs). Meanwhile, we emphasizes the significance of DACs in facilitating the delivery of PROTACs and delves into the impact of various components on DAC activity. These components include antibody targets, drug-antibody ratio (DAR), linker types, PROTACs targets, PROTACs connections, and E3 ligase ligands. The review also explores the suitability of different targets (antibody targets or PROTACs targets) for DACs, providing insights to guide the design of PROTACs better suited for antibody conjugation.
Collapse
Affiliation(s)
- Yaolin Guo
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Xie
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
7
|
Holborough-Kerkvliet MD, Mucignato G, Moons SJ, Psomiadou V, Konada RSR, Pedowitz NJ, Pratt MR, Kissel T, Koeleman CAM, Tjokrodirijo RTN, van Veelen PA, Huizinga T, van Schie KAJ, Wuhrer M, Kohler JJ, Bonger KM, Boltje TJ, Toes REM. A photoaffinity glycan-labeling approach to investigate immunoglobulin glycan-binding partners. Glycobiology 2023; 33:732-744. [PMID: 37498177 PMCID: PMC10627247 DOI: 10.1093/glycob/cwad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Abstract
Glycans play a pivotal role in biology. However, because of the low-affinity of glycan-protein interactions, many interaction pairs remain unknown. Two important glycoproteins involved in B-cell biology are the B-cell receptor and its secreted counterpart, antibodies. It has been indicated that glycans expressed by these B-cell-specific molecules can modulate immune activation via glycan-binding proteins. In several autoimmune diseases, an increased prevalence of variable domain glycosylation of IgG autoantibodies has been observed. Especially, the hallmarking autoantibodies in rheumatoid arthritis, anti-citrullinated protein antibodies, carry a substantial amount of variable domain glycans. The variable domain glycans expressed by these autoantibodies are N-linked, complex-type, and α2-6 sialylated, and B-cell receptors carrying variable domain glycans have been hypothesized to promote selection of autoreactive B cells via interactions with glycan-binding proteins. Here, we use the anti-citrullinated protein antibody response as a prototype to study potential in solution and in situ B-cell receptor-variable domain glycan interactors. We employed SiaDAz, a UV-activatable sialic acid analog carrying a diazirine moiety that can form covalent bonds with proximal glycan-binding proteins. We show, using oligosaccharide engineering, that SiaDAz can be readily incorporated into variable domain glycans of both antibodies and B-cell receptors. Our data show that antibody variable domain glycans are able to interact with inhibitory receptor, CD22. Interestingly, although we did not detect this interaction on the cell surface, we captured CD79 β glycan-B-cell receptor interactions. These results show the utility of combining photoaffinity labeling and oligosaccharide engineering for identifying antibody and B-cell receptor interactions and indicate that variable domain glycans appear not to be lectin cis ligands in our tested conditions.
Collapse
Affiliation(s)
| | - Greta Mucignato
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Sam J Moons
- Department of Synthetic Organic Chemistry, Radboud University, Toernooiveld 1, Mercator III, 6525 ED, Nijmegen, The Netherlands
| | - Venetia Psomiadou
- Department of Synthetic Organic Chemistry, Radboud University, Toernooiveld 1, Mercator III, 6525 ED, Nijmegen, The Netherlands
| | - Rohit S R Konada
- Department of Biochemistry, University of Texas Southwestern, 5323 Harry Hines Boulevard, Dallas, TX 75390-09185, United States
| | - Nichole J Pedowitz
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Theresa Kissel
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Rayman T N Tjokrodirijo
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Petrus A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Thomas Huizinga
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Karin A J van Schie
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern, 5323 Harry Hines Boulevard, Dallas, TX 75390-09185, United States
| | - Kimberly M Bonger
- Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Thomas J Boltje
- Department of Synthetic Organic Chemistry, Radboud University, Toernooiveld 1, Mercator III, 6525 ED, Nijmegen, The Netherlands
| | - Reinaldus E M Toes
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
8
|
Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther 2023; 8:104. [PMID: 36882399 PMCID: PMC9990587 DOI: 10.1038/s41392-023-01365-z] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer immunotherapy, mainly including immune checkpoints-targeted therapy and the adoptive transfer of engineered immune cells, has revolutionized the oncology landscape as it utilizes patients' own immune systems in combating the cancer cells. Cancer cells escape immune surveillance by hijacking the corresponding inhibitory pathways via overexpressing checkpoint genes. Phagocytosis checkpoints, such as CD47, CD24, MHC-I, PD-L1, STC-1 and GD2, have emerged as essential checkpoints for cancer immunotherapy by functioning as "don't eat me" signals or interacting with "eat me" signals to suppress immune responses. Phagocytosis checkpoints link innate immunity and adaptive immunity in cancer immunotherapy. Genetic ablation of these phagocytosis checkpoints, as well as blockade of their signaling pathways, robustly augments phagocytosis and reduces tumor size. Among all phagocytosis checkpoints, CD47 is the most thoroughly studied and has emerged as a rising star among targets for cancer treatment. CD47-targeting antibodies and inhibitors have been investigated in various preclinical and clinical trials. However, anemia and thrombocytopenia appear to be formidable challenges since CD47 is ubiquitously expressed on erythrocytes. Here, we review the reported phagocytosis checkpoints by discussing their mechanisms and functions in cancer immunotherapy, highlight clinical progress in targeting these checkpoints and discuss challenges and potential solutions to smooth the way for combination immunotherapeutic strategies that involve both innate and adaptive immune responses.
Collapse
|
9
|
Qazi S, Uckun FM. CD22 Exon 12 Deletion as an Independent Predictor of Poor Treatment Outcomes in B-ALL. Cancers (Basel) 2023; 15:1599. [PMID: 36900389 PMCID: PMC10000517 DOI: 10.3390/cancers15051599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
We previously reported a splicing defect (CD22ΔE12) associated with the deletion of exon 12 of the inhibitory co-receptor CD22 (Siglec-2) in leukemia cells from patients with CD19+ B-precursor acute lymphoblastic leukemia (B-ALL). CD22ΔE12 causes a truncating frameshift mutation and yields a dysfunctional CD22 protein that lacks most of the cytoplasmic domain required for its inhibitory function, and it is associated with aggressive in vivo growth of human B-ALL cells in mouse xenograft models. Although CD22ΔE12 with selective reduction of CD22 exon 12 (CD22E12) levels was detected in a high percentage of newly diagnosed as well as relapsed B-ALL patients, its clinical significance remains unknown. We hypothesized that B-ALL patients with very low levels of wildtype CD22 would exhibit a more aggressive disease with a worse prognosis because the missing inhibitory function of the truncated CD22 molecules could not be adequately compensated by competing wildtype CD22. Here, we demonstrate that newly diagnosed B-ALL patients with very low levels of residual wildtype CD22 ("CD22E12low"), as measured by RNAseq-based CD22E12 mRNA levels, have significantly worse leukemia-free survival (LFS) as well as overall survival (OS) than other B-ALL patients. CD22E12low status was identified as a poor prognostic indicator in both univariate and multivariate Cox proportional hazards models. CD22E12low status at presentation shows clinical potential as a poor prognostic biomarker that may guide the early allocation of risk-adjusted, patient-tailored treatment regimens and refine risk classification in high-risk B-ALL.
Collapse
Affiliation(s)
- Sanjive Qazi
- Ares Pharmaceuticals, Saint Paul, MN 55110, USA
- Division of Hematology-Oncology, Department of Pediatrics and Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine (USC KSOM), Los Angeles, CA 90027, USA
| | - Fatih M. Uckun
- Ares Pharmaceuticals, Saint Paul, MN 55110, USA
- Division of Hematology-Oncology, Department of Pediatrics and Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine (USC KSOM), Los Angeles, CA 90027, USA
| |
Collapse
|
10
|
Shin HG, Yang HR, Yoon A, Lee S. Bispecific Antibody-Based Immune-Cell Engagers and Their Emerging Therapeutic Targets in Cancer Immunotherapy. Int J Mol Sci 2022; 23:5686. [PMID: 35628495 PMCID: PMC9146966 DOI: 10.3390/ijms23105686] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is the second leading cause of death worldwide after cardiovascular diseases. Harnessing the power of immune cells is a promising strategy to improve the antitumor effect of cancer immunotherapy. Recent progress in recombinant DNA technology and antibody engineering has ushered in a new era of bispecific antibody (bsAb)-based immune-cell engagers (ICEs), including T- and natural-killer-cell engagers. Since the first approval of blinatumomab by the United States Food and Drug Administration (US FDA), various bsAb-based ICEs have been developed for the effective treatment of patients with cancer. Simultaneously, several potential therapeutic targets of bsAb-based ICEs have been identified in various cancers. Therefore, this review focused on not only highlighting the action mechanism, design and structure, and status of bsAb-based ICEs in clinical development and their approval by the US FDA for human malignancy treatment, but also on summarizing the currently known and emerging therapeutic targets in cancer. This review provides insights into practical considerations for developing next-generation ICEs.
Collapse
Affiliation(s)
- Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
| | - Aerin Yoon
- R&D Division, GC Biopharma, Yongin 16924, Korea
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
11
|
Zheng S, Gillespie E, Naqvi AS, Hayer KE, Ang Z, Torres-Diz M, Quesnel-Vallières M, Hottman DA, Bagashev A, Chukinas J, Schmidt C, Asnani M, Shraim R, Taylor DM, Rheingold SR, O'Brien MM, Singh N, Lynch KW, Ruella M, Barash Y, Tasian SK, Thomas-Tikhonenko A. Modulation of CD22 Protein Expression in Childhood Leukemia by Pervasive Splicing Aberrations: Implications for CD22-Directed Immunotherapies. Blood Cancer Discov 2022; 3:103-115. [PMID: 35015683 PMCID: PMC9780083 DOI: 10.1158/2643-3230.bcd-21-0087] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/30/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Downregulation of surface epitopes causes postimmunotherapy relapses in B-lymphoblastic leukemia (B-ALL). Here we demonstrate that mRNA encoding CD22 undergoes aberrant splicing in B-ALL. We describe the plasma membrane-bound CD22 Δex5-6 splice isoform, which is resistant to chimeric antigen receptor (CAR) T cells targeting the third immunoglobulin-like domain of CD22. We also describe splice variants skipping the AUG-containing exon 2 and failing to produce any identifiable protein, thereby defining an event that is rate limiting for epitope presentation. Indeed, forcing exon 2 skipping with morpholino oligonucleotides reduced CD22 protein expression and conferred resistance to the CD22-directed antibody-drug conjugate inotuzumab ozogamicin in vitro. Furthermore, among inotuzumab-treated pediatric patients with B-ALL, we identified one nonresponder in whose leukemic blasts Δex2 isoforms comprised the majority of CD22 transcripts. In a second patient, a sharp reduction in CD22 protein levels during relapse was driven entirely by increased CD22 exon 2 skipping. Thus, dysregulated CD22 splicing is a major mechanism of epitope downregulation and ensuing resistance to immunotherapy. SIGNIFICANCE The mechanism(s) underlying downregulation of surface CD22 following CD22-directed immunotherapy remains underexplored. Our biochemical and correlative studies demonstrate that in B-ALL, CD22 expression levels are controlled by inclusion/skipping of CD22 exon 2. Thus, aberrant splicing of CD22 is an important driver/biomarker of de novo and acquired resistance to CD22-directed immunotherapies. See related commentary by Bourcier and Abdel-Wahab, p. 87. This article is highlighted in the In This Issue feature, p. 85.
Collapse
Affiliation(s)
- Sisi Zheng
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Elisabeth Gillespie
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
| | - Ammar S. Naqvi
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
- Department of Biomedical and Health Informatics, Children's Hospital of
Philadelphia, Philadelphia, Pennsylvania
| | - Katharina E. Hayer
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
- Department of Biomedical and Health Informatics, Children's Hospital of
Philadelphia, Philadelphia, Pennsylvania
| | - Zhiwei Ang
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
| | - Manuel Torres-Diz
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
| | - Mathieu Quesnel-Vallières
- Department of Genetics, Perelman School of Medicine at the University of
Pennsylvania, Philadelphia, Pennsylvania
- Department of Biochemistry and Biophysics, Perelman School of Medicine at
the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David A. Hottman
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Asen Bagashev
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - John Chukinas
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Carolin Schmidt
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
| | - Mukta Asnani
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
| | - Rawan Shraim
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
- Department of Biomedical and Health Informatics, Children's Hospital of
Philadelphia, Philadelphia, Pennsylvania
| | - Deanne M. Taylor
- Department of Biomedical and Health Informatics, Children's Hospital of
Philadelphia, Philadelphia, Pennsylvania
| | - Susan R. Rheingold
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of
Pennsylvania, Philadelphia, Pennsylvania
| | - Maureen M. O'Brien
- Cincinnati Children's Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio
| | - Nathan Singh
- Department of Medicine, Perelman School of Medicine at the University of
Pennsylvania, Philadelphia, Pennsylvania
| | - Kristen W. Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine at
the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marco Ruella
- Department of Medicine, Perelman School of Medicine at the University of
Pennsylvania, Philadelphia, Pennsylvania
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine at the University of
Pennsylvania, Philadelphia, Pennsylvania
| | - Sarah K. Tasian
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of
Pennsylvania, Philadelphia, Pennsylvania
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of
Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine
at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Sorrentino C, D'Antonio L, Fieni C, Ciummo SL, Di Carlo E. Colorectal Cancer-Associated Immune Exhaustion Involves T and B Lymphocytes and Conventional NK Cells and Correlates With a Shorter Overall Survival. Front Immunol 2022; 12:778329. [PMID: 34975867 PMCID: PMC8716410 DOI: 10.3389/fimmu.2021.778329] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer worldwide, with a growing impact on public health and clinical management. Immunotherapy has shown promise in the treatment of advanced cancers, but needs to be improved for CRC, since only a limited fraction of patients is eligible for treatment, and most of them develop resistance due to progressive immune exhaustion. Here, we identify the transcriptional, molecular, and cellular traits of the immune exhaustion associated with CRC and determine their relationships with the patient's clinic-pathological profile. Bioinformatic analyses of RNA-sequencing data of 594 CRCs from TCGA PanCancer collection, revealed that, in the wide range of immune exhaustion genes, those coding for PD-L1, LAG3 and T-bet were associated (Cramér's V=0.3) with MSI/dMMR tumors and with a shorter overall survival (log-rank test: p=0.0004, p=0.0014 and p=0.0043, respectively), whereas high levels of expression of EOMES, TRAF1, PD-L1, FCRL4, BTLA and SIGLEC6 were associated with a shorter overall survival (log-rank test: p=0.0003, p=0.0188, p=0.0004, p=0.0303, p=0.0052 and p=0.0033, respectively), independently from the molecular subtype of CRC. Expression levels of PD-L1, PD-1, LAG3, EOMES, T-bet, and TIGIT were significantly correlated with each other and associated with genes coding for CD4+ and CD8+CD3+ T cell markers and NKp46+CD94+EOMES+T-bet+ cell markers, (OR >1.5, p<0.05), which identify a subset of group 1 innate lymphoid cells, namely conventional (c)NK cells. Expression of TRAF1 and BTLA co-occurred with both T cell markers, CD3γ, CD3δ, CD3ε, CD4, and B cell markers, CD19, CD20 and CD79a (OR >2, p<0.05). Expression of TGFβ1 was associated only with CD4 + and CD8+CD3ε+ T cell markers (odds ratio >2, p<0.05). Expression of PD-L2 and IDO1 was associated (OR >1.5, p<0.05) only with cNK cell markers, whereas expression of FCRL4, SIGLEC2 and SIGLEC6 was associated (OR >2.5; p<0.05) with CD19+CD20+CD79a+ B cell markers. Morphometric examination of immunostained CRC tissue sections, obtained from a validation cohort of 53 CRC patients, substantiated the biostatistical findings, showing that the highest percentage of immune exhaustion gene expressing cells were found in tumors from short-term survivors and that functional exhaustion is not confined to T lymphocytes, but also involves B cells, and cNK cells. This concept was strengthened by CYBERSORTx analysis, which revealed the expression of additional immune exhaustion genes, in particular FOXP1, SIRT1, BATF, NR4A1 and TOX, by subpopulations of T, B and NK cells. This study provides novel insight into the immune exhaustion landscape of CRC and emphasizes the need for a customized multi-targeted therapeutic approach to overcome resistance to current immunotherapy.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luigi D'Antonio
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
13
|
Coltoff AR, Jurcic JG. Targeted radionuclide therapy of hematologic malignancies. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Kaifu T, Yabe R, Maruhashi T, Chung SH, Tateno H, Fujikado N, Hirabayashi J, Iwakura Y. DCIR and its ligand asialo-biantennary N-glycan regulate DC function and osteoclastogenesis. J Exp Med 2021; 218:e20210435. [PMID: 34817551 PMCID: PMC8624811 DOI: 10.1084/jem.20210435] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/16/2021] [Accepted: 09/23/2021] [Indexed: 11/04/2022] Open
Abstract
Dendritic cell immunoreceptor (DCIR) is a C-type lectin receptor with a carbohydrate recognition domain and an immunoreceptor tyrosine-based inhibitory motif. Previously, we showed that Dcir-/- mice spontaneously develop autoimmune enthesitis and sialadenitis, and also develop metabolic bone abnormalities. However, the ligands for DCIR functionality remain to be elucidated. Here we showed that DCIR is expressed on osteoclasts and DCs and binds to an asialo-biantennary N-glycan(s) (NA2) on bone cells and myeloid cells. Osteoclastogenesis was enhanced in Dcir-/- cells, and NA2 inhibited osteoclastogenesis. Neuraminidase treatment, which exposes excess NA2 by removing the terminal sialic acid of N-glycans, suppressed osteoclastogenesis and DC function. Neuraminidase treatment of mice ameliorated collagen-induced arthritis and experimental autoimmune encephalomyelitis in a DCIR-dependent manner, due to suppression of antigen presentation by DCs. These results suggest that DCIR activity is regulated by the modification of the terminal sialylation of biantennary N-glycans, and this interaction is important for the control of both autoimmune and bone metabolic diseases.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Cells, Cultured
- Dendritic Cells/immunology
- Dendritic Cells/physiology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- HEK293 Cells
- Humans
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mice, Transgenic
- N-Acetylglucosaminyltransferases/genetics
- N-Acetylglucosaminyltransferases/metabolism
- Neuraminidase/metabolism
- Neuraminidase/pharmacology
- Osteoclasts/metabolism
- Osteogenesis/physiology
- Polysaccharides/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Mice
Collapse
Affiliation(s)
- Tomonori Kaifu
- Center for Animal Disease Models, Research Institution for Biological Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Rikio Yabe
- Center for Animal Disease Models, Research Institution for Biological Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
| | - Takumi Maruhashi
- Center for Animal Disease Models, Research Institution for Biological Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Soo-Hyun Chung
- Center for Animal Disease Models, Research Institution for Biological Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Hiroaki Tateno
- Glycan Lectin Engineering Team, Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Noriyuki Fujikado
- Center for Animal Disease Models, Research Institution for Biological Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Jun Hirabayashi
- Glycan Lectin Engineering Team, Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institution for Biological Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
15
|
Sykes GP, Kamtchum-Tatuene J, Falcione S, Zehnder S, Munsterman D, Stamova B, Ander BP, Sharp FR, Jickling G. Aging Immune System in Acute Ischemic Stroke: A Transcriptomic Analysis. Stroke 2021; 52:1355-1361. [PMID: 33641386 PMCID: PMC8011932 DOI: 10.1161/strokeaha.120.032040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Gina P Sykes
- Division of Neurology, Department of Medicine (G.P.S., S.Z., D.M., G.J.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Joseph Kamtchum-Tatuene
- Neuroscience and Mental Health Institute (J.K.-T., G.J.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Sarina Falcione
- Department of Medical Microbiology and Immunology (S.F.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Sarah Zehnder
- Division of Neurology, Department of Medicine (G.P.S., S.Z., D.M., G.J.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Danielle Munsterman
- Division of Neurology, Department of Medicine (G.P.S., S.Z., D.M., G.J.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Boryana Stamova
- Department of Neurology, University of California, Davis, Sacramento (B.S., B.P.A., F.R.S., G.J.)
| | - Bradley P Ander
- Department of Neurology, University of California, Davis, Sacramento (B.S., B.P.A., F.R.S., G.J.)
| | - Frank R Sharp
- Department of Neurology, University of California, Davis, Sacramento (B.S., B.P.A., F.R.S., G.J.)
| | - Glen Jickling
- Division of Neurology, Department of Medicine (G.P.S., S.Z., D.M., G.J.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute (J.K.-T., G.J.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Department of Neurology, University of California, Davis, Sacramento (B.S., B.P.A., F.R.S., G.J.)
| |
Collapse
|
16
|
Rincón-Arévalo H, Rojas M, Vanegas-García A, Muñoz-Vahos C, Orejuela-Erazo J, Vásquez G, Castaño D. Atypical phenotype and response of B cells in patients with seropositive rheumatoid arthritis. Clin Exp Immunol 2021; 204:221-238. [PMID: 33459349 DOI: 10.1111/cei.13576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 01/02/2023] Open
Abstract
Patients with rheumatoid arthritis (RA) may be classified as seropositive or seronegative according to the presence of autoantibodies. An abnormal B cell phenotype and function could be one of the main components of the immunopathology of seropositive patients; however, there is little information regarding B cell defects in these patients. This study shows a broad characterization of the B cell phenotype and function in patients with seropositive RA. We focused mainly on the evaluation of subsets, the expression of modulatory molecules of cell activation (CD22, FcɣRIIb and FcµR), calcium mobilization, global tyrosine phosphorylation, expression of activation markers, cytokine and immunoglobulin (Ig) production, proliferation and the in-vitro generation of plasma cells. Increased frequency of CD27- IgM- IgD- and CD21- B cells was observed in patients with seropositive RA compared with healthy donors (HD). Decreased expression of CD22 was primarily found in memory B cells of patients with RA regardless of seropositivity. B cells from seropositive patients exhibited normal proliferation, calcium mobilization kinetics and global tyrosine phosphorylation, but showed an increased frequency of CD86+ B cells compared with HD. B cells of seropositive patients secrete less interleukin-10 after in-vitro activation and showed a decreased frequency of plasma cell differentiation and IgM production compared with HD. Our data indicate that patients with seropositive RA have an increased frequency of atypical B cell populations previously associated with chronic activation and antigen exposure. This may result in the observed low responsiveness of these cells in vitro.
Collapse
Affiliation(s)
- H Rincón-Arévalo
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - M Rojas
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Unidad de Citometría, Facultad de Medicina, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Medellín, Colombia
| | - A Vanegas-García
- Unidad Reumatología, Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - C Muñoz-Vahos
- Unidad Reumatología, Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - J Orejuela-Erazo
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - G Vásquez
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - D Castaño
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
17
|
Crute BW, Sheraden R, Ott VL, Harley ITW, Getahun A, Cambier JC. Inhibitory Receptor Trap: A Platform for Discovery of Inhibitory Receptors That Utilize Inositol Lipid and Phosphotyrosine Phosphatase Effectors. Front Immunol 2020; 11:592329. [PMID: 33193438 PMCID: PMC7641642 DOI: 10.3389/fimmu.2020.592329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/29/2020] [Indexed: 01/06/2023] Open
Abstract
Among the areas of most impactful recent progress in immunology is the discovery of inhibitory receptors and the subsequent translation of this knowledge to the clinic. Although the original and canonical member of this family is FcγRIIB, more recent studies defined PD1 as an inhibitory receptor that constrains T cell immunity to tumors. These studies led to development of “checkpoint blockade” immunotherapies (CBT) for cancers in which PD1 interactions with its ligand are blocked. Unfortunately, although very effective in some patients, only a small proportion respond to this therapy. This suggests that additional as yet undescribed inhibitory receptors exist, which could be exploited. Here, we describe a new platform, termed inhibitory receptor trap (IRT), for discovery of members of this family. The approach takes advantage of the fact that many of the known inhibitory receptors mediate signaling by phospho-immunoreceptor tyrosine-based inhibition motif (ITIM) mediated recruitment of Src Homology 2 (SH2) domain-containing phosphatases including the SH2 domain-containing inositol phosphatase SHIP1 encoded by the INPP5D gene and the SH2 domain-containing phosphotyrosine phosphatases SHP1 and SHP2 encoded by the PTPN6 and PTPN11 genes respectively. Here, we describe the IRT discovery platform in which the SH2 domains of inhibitory phosphatases are used for affinity-based isolation and subsequent identification of candidate effectors via immunoblotting and high sensitivity liquid chromatography–mass spectrometry. These receptors may represent alternative targets that can be exploited for improved CBT. Salient observations from these studies include the following: SH2 domains derived from the respective phosphatases bind distinct sets of candidates from different cell types. Thus, cells of different identity and different activation states express partially distinct repertoires of up and downstream phosphatase effectors. Phosphorylated PD1 binds not only SHP2 but also SHIP1, thus the latter may be important in its inhibitory function. B cell antigen receptor signaling leads predominantly to CD79 mono-phosphorylation as indicated by much greater binding to LynSH2 than Syk(SH2)2. This balance of ITAM mono- versus bi-phosphorylation likely tunes signaling by varying activation of inhibitory (Lyn) and stimulatory (Syk) pathways.
Collapse
Affiliation(s)
- Bergren W Crute
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Rachel Sheraden
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Vanessa L Ott
- Department of Biomedical Sciences, National Jewish Health, Denver, CO, United States
| | - Isaac T W Harley
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Biomedical Sciences, National Jewish Health, Denver, CO, United States
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Biomedical Sciences, National Jewish Health, Denver, CO, United States
| |
Collapse
|
18
|
Mortales CL, Lee SU, Manousadjian A, Hayama KL, Demetriou M. N-Glycan Branching Decouples B Cell Innate and Adaptive Immunity to Control Inflammatory Demyelination. iScience 2020; 23:101380. [PMID: 32745987 PMCID: PMC7398982 DOI: 10.1016/j.isci.2020.101380] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/10/2020] [Accepted: 07/14/2020] [Indexed: 11/21/2022] Open
Abstract
B cell depletion potently reduces episodes of inflammatory demyelination in multiple sclerosis (MS), predominantly through loss of innate rather than adaptive immunity. However, molecular mechanisms controlling innate versus adaptive B cell function are poorly understood. N-glycan branching, via interactions with galectins, controls endocytosis and signaling of cell surface receptors to control cell function. Here we report that N-glycan branching in B cells dose dependently reduces pro-inflammatory innate responses by titrating decreases in Toll-like receptor-4 (TLR4) and TLR2 surface expression via endocytosis. In contrast, a minimal level of N-glycan branching maximizes surface retention of the B cell receptor (BCR) and the CD19 co-receptor to promote adaptive immunity. Branched N-glycans inhibit antigen presentation by B cells to reduce T helper cell-17 (TH17)/TH1 differentiation and inflammatory demyelination in mice. Thus, N-glycan branching negatively regulates B cell innate function while promoting/maintaining adaptive immunity via BCR, providing an attractive therapeutic target for MS.
Collapse
Affiliation(s)
- Christie-Lynn Mortales
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92617, USA
| | - Sung-Uk Lee
- Department of Neurology, University of California, Irvine, CA 92617, USA
| | - Armen Manousadjian
- Department of Neurology, University of California, Irvine, CA 92617, USA
| | - Ken L Hayama
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92617, USA
| | - Michael Demetriou
- Department of Neurology, University of California, Irvine, CA 92617, USA; Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92617, USA.
| |
Collapse
|
19
|
Ryland GL, Barraclough A, Fong CY, Fleming S, Bajel A, Hofmann O, Westerman D, Grimmond S, Blombery P. Inotuzumab ozogamicin resistance associated with a novel CD22 truncating mutation in a case of B-acute lymphoblastic leukaemia. Br J Haematol 2020; 191:123-126. [PMID: 32648276 DOI: 10.1111/bjh.16949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Georgina L Ryland
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Allison Barraclough
- Department of Clinical Haematology, Austin Health, Heidelberg, VIC, Australia
| | - Chun Yew Fong
- Department of Clinical Haematology, Austin Health, Heidelberg, VIC, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Shaun Fleming
- Department of Clinical Haematology, Alfred Hospital, Melbourne, VIC, Australia
| | - Ashish Bajel
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Oliver Hofmann
- Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia
| | - David Westerman
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Sean Grimmond
- Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Liu S, Pan C, Tang Y, Chen F, Yang M, Wang KJ. Identification of novel long non-coding RNAs involved in bisphenol A induced immunotoxicity in fish primary macrophages. FISH & SHELLFISH IMMUNOLOGY 2020; 100:152-160. [PMID: 32147374 DOI: 10.1016/j.fsi.2020.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA), a well-known environmental endocrine-disrupting chemical (EDC), could pose a great toxicity risk to aquatic organisms. The present study aimed to evaluate the underlying role of long non-coding RNAs (lncRNAs) in BPA-induced immunotoxicity in head kidney (HK) macrophages of the red common carp (Cyprinus carpio), using lncRNA-RNA sequencing (RNA-Seq). In BPA-exposed HK macrophages group, 2,095 and 1,138 differentially expressed mRNAs (DEGs) and lncRNAs (DE-lncRNAs) were obtained, respectively, compared with controls. The qRT-PCR validation results of DEGs and DE-lncRNAs were similar to the RNA-Seq results. The KEGG analysis of DEGs and target genes of DE-lncRNAs have shown that some immune-related signaling pathways, including NF-kappa B, Toll-like receptor, B-cell receptor, Jak-STAT, and Hippo signaling pathways, were severely disrupted by BPA exposure. Moreover, we observed the synergic regulation of some mRNAs involved in immune response such as two hub genes traf6 and mapk1/3 and their upstream lncRNAs in HK macrophages upon the BPA exposure or its analogue bisphenol S (BPS) exposure. This suggested the dysregulation of lncRNAs by BPA or BPS may lead to a change in the expression of hub genes, which affects the cross-talk of various signaling pathways by interaction with other network genes. In conclusion, the present study demonstrates the potential role of lncRNAs in immunotoxicity of bisphenol compounds in red common carp HK macrophages, and our results provide evidence for further exploring lncRNA's role in EDC-induced toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Shuai Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Chenyuan Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yi Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
21
|
Characterization of Sialic Acid-Binding Immunoglobulin-Type Lectins in Fish Reveals Teleost-Specific Structures and Expression Patterns. Cells 2020; 9:cells9040836. [PMID: 32244286 PMCID: PMC7226832 DOI: 10.3390/cells9040836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
The cellular glycocalyx of vertebrates is frequently decorated with sialic acid residues. These sialylated structures are recognized by sialic acid-binding immunoglobulin-type lectins (Siglecs) of immune cells, which modulate their responsiveness. Fifteen Siglecs are known to be expressed in humans, but only four Siglecs are regularly present in fish: Siglec1, CD22, myelin-associated glycoprotein (MAG), and Siglec15. While several studies have dealt with the physiological roles of these four Siglecs in mammals, little is known about Siglecs in fish. In the present manuscript, the expression landscapes of these Siglecs were determined in the two salmonid species Oncorhynchus mykiss and Coregonus maraena and in the percid fish Sander lucioperca. This gene-expression profiling revealed that the expression of MAG is not restricted to neuronal cells but is detectable in all analyzed blood cells, including erythrocytes. The teleostean MAG contains the inhibitory motif ITIM; therefore, an additional immunomodulatory function of MAG is likely to be present in fish. Besides MAG, Siglec1, CD22, and Siglec15 were also expressed in all analyzed blood cell populations. Interestingly, the expression profiles of genes encoding Siglecs and particular associated enzymes changed in a gene- and tissue-specific manner when Coregonus maraena was exposed to handling stress. Thus, the obtained data indicate once more that stress directly affects immune-associated processes.
Collapse
|
22
|
Jacoby E, Shahani SA, Shah NN. Updates on CAR T-cell therapy in B-cell malignancies. Immunol Rev 2020; 290:39-59. [PMID: 31355492 DOI: 10.1111/imr.12774] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022]
Abstract
By increasing disease-free survival and offering the potential for long-term cure, chimeric antigen receptor (CAR) T-cell therapy has dramatically expanded therapeutic options among those with high-risk B-cell malignancies. As CAR T-cell utilization evolves however, novel challenges are generated. These include determining how to optimally integrate CAR T cells into standard of care and overcoming mechanisms of resistance to CAR T-cell therapy, such as evolutionary stress induced on cancer cells leading to immunophenotypic changes that allow leukemia to evade this targeted therapy. Compounding these challenges are the limited ability to determine differences between various CAR T-cell constructs, understanding the generalizability of trial outcomes from multiple sites utilizing unique CAR manufacturing strategies, and comparing distinct criteria for toxicity grading while defining optimal management. Additionally, as understanding of CAR behavior in humans has developed, strategies have appropriately evolved to proactively mitigate toxicities. These challenges offer complimentary insights and guide next steps to enhance the efficacy of this novel therapeutic modality. With a focus on B-cell malignancies as the paradigm for effective CAR T-cell therapy, this review describes advances in the field as well as current challenges and future directions.
Collapse
Affiliation(s)
- Elad Jacoby
- Division of Pediatric Hematology, Oncology and BMT, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shilpa A Shahani
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
23
|
The regulators of BCR signaling during B cell activation. BLOOD SCIENCE 2019; 1:119-129. [PMID: 35402811 PMCID: PMC8975005 DOI: 10.1097/bs9.0000000000000026] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/25/2019] [Indexed: 11/26/2022] Open
Abstract
B lymphocytes produce antibodies under the stimulation of specific antigens, thereby exerting an immune effect. B cells identify antigens by their surface B cell receptor (BCR), which upon stimulation, directs the cell to activate and differentiate into antibody generating plasma cells. Activation of B cells via their BCRs involves signaling pathways that are tightly controlled by various regulators. In this review, we will discuss three major BCR mediated signaling pathways (the PLC-γ2 pathway, PI3K pathway and MAPK pathway) and related regulators, which were roughly divided into positive, negative and mutual-balanced regulators, and the specific regulators of the specific signaling pathway based on regulatory effects.
Collapse
|
24
|
Guo F, Luo Y, Jiang X, Lu X, Roberti D, Lossos C, Kunkalla K, Magistri M, Rui L, Verdun R, Vega F, Moy VT, Lossos IS. Recent BCR stimulation induces a negative autoregulatory loop via FBXO10 mediated degradation of HGAL. Leukemia 2019; 34:553-566. [PMID: 31570756 DOI: 10.1038/s41375-019-0579-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
Regulating B-cell receptor (BCR) signaling after antigenic stimulation is essential to properly control immune responses. Currently known mechanisms of inhibiting BCR signaling are via co-receptor stimulation and downstream immunoreceptor tyrosine-based inhibition motif (ITIM) phosphorylation. Herein we demonstrate that BCR stimulation induces rapid and reversible palmitoylation of the SCF-FBXO10 ubiquitin E3 ligase. This results in FBXO10 relocation to the cell membrane, where it targets the human germinal center-associated lymphoma (HGAL) protein for ubiquitylation and degradation, leading to decreases in both BCR-induced calcium influx and phosphorylation of proximal BCR effectors. Importantly, FBXO10 recognition and degradation of HGAL is phosphorylation independent and instead relies on a single evolutionarily conserved HGAL amino acid residue (H91) and FBXO10 relocalization to the cytoplasmic membrane. Together our findings demonstrate the first evidence of negative BCR signaling regulation from direct BCR stimulation and define the temporospatial functions of the FBXO10-HGAL axis. FBXO10 is infrequently mutated in DLBCL but some of these mutations deregulate BCR signaling. These observations may have important implications on lymphomagenesis and other immune processes.
Collapse
Affiliation(s)
- Fengjie Guo
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuan Luo
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xiaoyu Jiang
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - XiaoQing Lu
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Domenico Roberti
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Chen Lossos
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kranthi Kunkalla
- Department of Pathology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Marco Magistri
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lixin Rui
- Department of Medicine and Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ramiro Verdun
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Francisco Vega
- Department of Pathology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Vincent T Moy
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Izidore S Lossos
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA. .,Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
25
|
Janus A, Robak T. Moxetumomab pasudotox for the treatment of hairy cell leukemia. Expert Opin Biol Ther 2019; 19:501-508. [PMID: 31045462 DOI: 10.1080/14712598.2019.1614558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Abstract
Introduction: Cladribine and pentostatin are the drugs of choice in the treatment of hairy cell leukemia (HCL). Recently, immunotoxin moxetumomab pasudotox has been introduced to improve the prognosis in relapsed and refractory HCL. Areas covered: This review discusses the mechanism of action, safety, and efficacy of moxetumomab pasudotox in HCL patients. A literature review of the MEDLINE database for articles in English concerning immunotoxins, moxetumomab pasudotox, and hairy cell leukemia was conducted via PubMed. Publications from 2000 through December 2018 were scrutinized. The search terms used were immunotoxins and moxetumomab pasudotox in conjunction with hairy cell leukemia. Conference proceedings from the previous five years of the American Society of Hematology, European Hematology Association and American Society of Clinical Oncology were searched manually. Additional relevant publications were obtained by reviewing the references from the chosen articles. Results/conclusion: Moxetumomab pasudotox, a novel recombinant anti-CD22 immunotoxin, was well tolerated and active in the previous phase 1 and 3 studies in patients with HCL. The drug has been approved in 2018 by the FDA for the treatment of patients with relapsed/refractory HCL who had at least two prior systemic therapies including at least one purine nucleoside analog. Expert opinion: The use of moxetumomab pasudotox is a promising new strategy for the treatment of HCL.
Collapse
Affiliation(s)
- Agnieszka Janus
- a Department of Hematology , Medical University of Lodz and Copernicus Memorial Hospital , Lodz , Poland
| | - Tadeusz Robak
- a Department of Hematology , Medical University of Lodz and Copernicus Memorial Hospital , Lodz , Poland
| |
Collapse
|
26
|
Bornhöfft KF, Goldammer T, Rebl A, Galuska SP. Siglecs: A journey through the evolution of sialic acid-binding immunoglobulin-type lectins. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:219-231. [PMID: 29751010 DOI: 10.1016/j.dci.2018.05.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 05/11/2023]
Abstract
Siglecs (sialic acid-binding immunoglobulin-type lectins) are a family of immune regulatory receptors predominantly found on the cells of the hematopoietic system. A V-set Ig-like domain mediates the recognition of different sialylated glycoconjugates, which can lead to the activation or inhibition of the immune response, depending on the involved Siglecs. Siglecs are categorized into two subgroups: one including all CD33-related Siglecs and the other consisting of Siglec-1 (Sialoadhesin), Siglec-2 (CD22), Siglec-4 (myelin-associated glycoprotein, MAG) and Siglec-15. In contrast to the members of the CD33-related Siglecs, which share ∼50-99% sequence identity, Siglecs of the other subgroup show quite low homology (approximately 25-30% sequence identity). Based on the published sequences and functions of Siglecs, we performed phylogenetic analyses and sequence alignments to reveal the conservation of Siglecs throughout evolution. Therefore, we focused on the presence of Siglecs in different classes of vertebrates (fishes, amphibians, birds, reptiles and mammals), offering a bridge between the presence of different Siglecs and the biological situations of the selected animals.
Collapse
Affiliation(s)
- Kim F Bornhöfft
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Tom Goldammer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Sebastian P Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
27
|
Mariño-Crespo Ó, Fernández-Briera A, Gil-Martín E. Identification of proteins with the CDw75 epitope in human colorectal cancer. Oncol Lett 2018; 15:580-587. [PMID: 29391890 DOI: 10.3892/ol.2017.7336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 07/28/2017] [Indexed: 11/05/2022] Open
Abstract
The CDw75 epitope is an α(2,6) sialylated antigen overexpressed in colorectal cancer (CRC), where its expression correlates with the progression of the disease. The CDw75 epitope is located mainly in N-glycoproteins, whose identity remains unknown. The aim of the present study was to identify proteins with the CDw75 epitope as a strategy to deepen the understanding of molecular pathogenesis of CRC and to identify novel biomarkers for this disease. For this purpose, a two-dimensional electrophoresis approach was employed. Protein spots in the gels were matched to the corresponding CDw75 positive spots in the immunoblotted polyvinylidene difluoride membranes, and further identification of the protein species was performed by mass spectrometry. Additionally, one-dimensional western blotting experiments were performed to verify the expression of these candidate proteins in the colorectal tissue and their coincidence in molecular mass with the CDw75-positive bands. The findings of the present study indicate that haptoglobin and the keratins 8 (K8) and 18 (K18) are proteins with the CDw75 epitope in the colorectal tissue from CRC patients and also suggest novel functions and cellular locations for these proteins in the colorectal tissue and in relation to CRC.
Collapse
Affiliation(s)
- Óscar Mariño-Crespo
- Department of Biochemistry, Genetics and Immunology, Biomedical Research Center (CINBIO, 'Centro Singular de Investigación de Galicia'), University of Vigo, 36310 Vigo, Spain
| | - Almudena Fernández-Briera
- Department of Biochemistry, Genetics and Immunology, Biomedical Research Center (CINBIO, 'Centro Singular de Investigación de Galicia'), University of Vigo, 36310 Vigo, Spain
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Biomedical Research Center (CINBIO, 'Centro Singular de Investigación de Galicia'), University of Vigo, 36310 Vigo, Spain
| |
Collapse
|
28
|
Satterthwaite AB. Bruton's Tyrosine Kinase, a Component of B Cell Signaling Pathways, Has Multiple Roles in the Pathogenesis of Lupus. Front Immunol 2018; 8:1986. [PMID: 29403475 PMCID: PMC5786522 DOI: 10.3389/fimmu.2017.01986] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/21/2017] [Indexed: 01/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the loss of adaptive immune tolerance to nucleic acid-containing antigens. The resulting autoantibodies form immune complexes that promote inflammation and tissue damage. Defining the signals that drive pathogenic autoantibody production is an important step in the development of more targeted therapeutic approaches for lupus, which is currently treated primarily with non-specific immunosuppression. Here, we review the contribution of Bruton’s tyrosine kinase (Btk), a component of B and myeloid cell signaling pathways, to disease in murine lupus models. Both gain- and loss-of-function genetic studies have revealed that Btk plays multiple roles in the production of autoantibodies. These include promoting the activation, plasma cell differentiation, and class switching of autoreactive B cells. Small molecule inhibitors of Btk are effective at reducing autoantibody levels, B cell activation, and kidney damage in several lupus models. These studies suggest that Btk may promote end-organ damage both by facilitating the production of autoantibodies and by mediating the inflammatory response of myeloid cells to these immune complexes. While Btk has not been associated with SLE in GWAS studies, SLE B cells display signaling defects in components both upstream and downstream of Btk consistent with enhanced activation of Btk signaling pathways. Taken together, these observations indicate that limiting Btk activity is critical for maintaining B cell tolerance and preventing the development of autoimmune disease. Btk inhibitors, generally well-tolerated and approved to treat B cell malignancy, may thus be a useful therapeutic approach for SLE.
Collapse
Affiliation(s)
- Anne B Satterthwaite
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
29
|
Chen J, Wang H, Xu WP, Wei SS, Li HJ, Mei YQ, Li YG, Wang YP. Besides an ITIM/SHP-1-dependent pathway, CD22 collaborates with Grb2 and plasma membrane calcium-ATPase in an ITIM/SHP-1-independent pathway of attenuation of Ca2+i signal in B cells. Oncotarget 2018; 7:56129-56146. [PMID: 27276708 PMCID: PMC5302901 DOI: 10.18632/oncotarget.9794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/14/2016] [Indexed: 12/30/2022] Open
Abstract
CD22 is a surface immunoglobulin implicated in negative regulation of B cell receptor (BCR) signaling; particularly inhibiting intracellular Ca2+ (Ca2+i)signals. Its cytoplasmic tail contains six tyrosine residues (Y773/Y783/Y817/Y828/Y843/Y863, designated Y1~Y6 respectively), including three (Y2/5/6) lying within immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that serve to recruit the protein tyrosine phosphatase SHP-1 after BCR activation-induced phosphorylation. The mechanism of inhibiting Ca2+i by CD22 has been poorly understood. Previous study demonstrated that CD22 associated with plasma membrane calcium-ATPase (PMCA) and enhanced its activity (Chen, J. et al. Nat Immunol 2004;5:651-7). The association is dependent on BCR activation-induced cytoplasmic tyrosine phosphorylation, because CD22 with either all six tyrosines mutated to phenylalanines or cytoplasmic tail truncated loses its ability to associate with PMCA. However, which individual or a group of tyrosine residues determine the association and how CD22 and PMCA interacts, are still unclear. In this study, by using a series of CD22 tyrosine mutants, we found that ITIM Y2/5/6 accounts for 34.3~37.1% Ca2+i inhibition but is irrelevant for CD22/PMCA association. Non-ITIM Y4 and its YEND motif contribute to the remaining 69.4~71.7% Ca2+i inhibition and is the binding site for PMCA-associated Grb2. Grb2, independently of BCR cross-linking, is constitutively associated with and directly binds to PMCA in both chicken and human B cells. Knockout of Grb2 by CRISPR/Cas9 completely disrupted the CD22/PMCA association. Thus, our results demonstrate for the first time that in addition to previously-identified ITIM/SHP-1-dependent pathway, CD22 holds a major pathway of negative regulation of Ca2+i signal, which is ITIM/SHP-1-independent, but Y4/Grb2/PMCA-dependent.
Collapse
Affiliation(s)
- Jie Chen
- Department of Cardiology, Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, Shanghai, China
| | - Hong Wang
- Department of Cardiology, Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, Shanghai, China
| | - Wei-Ping Xu
- Department of Cardiology, Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, Shanghai, China
| | - Si-Si Wei
- Department of Pediatrics, Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, Shanghai, China
| | - Hui Joyce Li
- Department of Medicine, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - Yun-Qing Mei
- Department of Cardio-Thoracic Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi-Gang Li
- Department of Cardiology, Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, Shanghai, China
| | - Yue-Peng Wang
- Department of Cardiology, Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Agha Amiri S, Shahhosseini S, Zarei N, Khorasanizadeh D, Aminollahi E, Rezaie F, Zargari M, Azizi M, Khalaj V. A novel anti-CD22 scFv-apoptin fusion protein induces apoptosis in malignant B-cells. AMB Express 2017; 7:112. [PMID: 28582973 PMCID: PMC5457376 DOI: 10.1186/s13568-017-0410-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/17/2022] Open
Abstract
CD22 marker is a highly internalizing antigen which is located on the surface of B-cells and is being used as a promising target for treatment of B cell malignancies. Monoclonal antibodies targeting CD22 have been introduced and some are currently under investigation in clinical trials. Building on the success of antibody drug conjugates, we developed a fusion protein consisting of a novel anti-CD22 scFv and apoptin and tested binding and therapeutic effects in lymphoma cells. The recombinant protein was expressed in E. coli and successfully purified and refolded. In vitro binding analysis by immunofluorescence and flow cytometry demonstrated that the recombinant protein specifically binds to CD22 positive Raji cells but not to CD22 negative Jurkat cells. The cytotoxic properties of scFv–apoptin were assessed by an MTT assay and Annexin V/PI flow cytometry analysis and showed that the recombinant protein induced apoptosis preferentially in Raji cells with no detectable effects in Jurkat cells. Our findings indicated that the recombinant anti-CD22 scFv–apoptin fusion protein could successfully cross the cell membrane and induce apoptosis with high specificity, make it as a promising molecule for immunotherapy of B-cell malignancies.
Collapse
|
31
|
Ereño-Orbea J, Sicard T, Cui H, Mazhab-Jafari MT, Benlekbir S, Guarné A, Rubinstein JL, Julien JP. Molecular basis of human CD22 function and therapeutic targeting. Nat Commun 2017; 8:764. [PMID: 28970495 PMCID: PMC5624926 DOI: 10.1038/s41467-017-00836-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022] Open
Abstract
CD22 maintains a baseline level of B-cell inhibition to keep humoral immunity in check. As a B-cell-restricted antigen, CD22 is targeted in therapies against dysregulated B cells that cause autoimmune diseases and blood cancers. Here we report the crystal structure of human CD22 at 2.1 Å resolution, which reveals that specificity for α2-6 sialic acid ligands is dictated by a pre-formed β-hairpin as a unique mode of recognition across sialic acid-binding immunoglobulin-type lectins. The CD22 ectodomain adopts an extended conformation that facilitates concomitant CD22 nanocluster formation on B cells and binding to trans ligands to avert autoimmunity in mammals. We structurally delineate the CD22 site targeted by the therapeutic antibody epratuzumab at 3.1 Å resolution and determine a critical role for CD22 N-linked glycosylation in antibody engagement. Our studies provide molecular insights into mechanisms governing B-cell inhibition and valuable clues for the design of immune modulators in B-cell dysfunction.The B-cell-specific co-receptor CD22 is a therapeutic target for depleting dysregulated B cells. Here the authors structurally characterize the ectodomain of CD22 and present its crystal structure with the bound therapeutic antibody epratuzumab, which gives insights into the mechanism of inhibition of B-cell activation.
Collapse
Affiliation(s)
- June Ereño-Orbea
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada, M5G 0A4
| | - Taylor Sicard
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada, M5G 0A4
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada, M5S 1A8
| | - Hong Cui
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada, M5G 0A4
| | - Mohammad T Mazhab-Jafari
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada, M5G 0A4
| | - Samir Benlekbir
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada, M5G 0A4
| | - Alba Guarné
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, ON, Canada, L8S 4L8
| | - John L Rubinstein
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada, M5G 0A4
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada, M5S 1A8
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada, M5G 1L7
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada, M5G 0A4.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada, M5S 1A8.
- Department of Immunology, University of Toronto, Toronto, ON, Canada, M5S 1A8.
| |
Collapse
|
32
|
Assad S, Khan HH, Ghazanfar H, Khan ZH, Mansoor S, Rahman MA, Khan GH, Zafar B, Tariq U, Malik SA. Role of Sex Hormone Levels and Psychological Stress in the Pathogenesis of Autoimmune Diseases. Cureus 2017; 9:e1315. [PMID: 28690949 PMCID: PMC5498122 DOI: 10.7759/cureus.1315] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The aim of this review article is to assess the connection between psychological stress and sex hormones and their effect on the development of autoimmune diseases. Psychological stress describes what people feel when they are under mental, physical, or emotional pressure. We searched for online articles using MEDLINE®, Embase, Cochrane Library and Google Scholar. Our research yielded a total of 165 articles out of which 30 articles were considered for further perusal. The articles were reviewed from February 2016 to February 2017. Case reports and patients suffering from hematolymphoid malignancies and active infections were excluded from the review. Estrogen and testosterone are potential physiological regulatory factors for the peripheral development of CD4+CD25+ T regulatory cells. Stress at any age leads to the depletion of estrogen and testosterone stores in the body, leading to the loss of expansion of T regulatory cells, making the immature B cells evade the negative selection at the germinal center, or in other words, leading to the loss of central tolerance, a triggering event in autoimmune diseases like systemic lupus erythematosus. Autoimmune diseases in women are most likely due to changes in estrogen levels during mental, physical, pre-menopausal, post-menopausal, and pregnancy-induced stress. We conclude that modulating estrogen in females (pre-menopausal and post-menopausal) and testosterone in males can be used to treat stress-related immune imbalance resulting in autoimmune diseases in both sexes.
Collapse
Affiliation(s)
- Salman Assad
- Department of Medicine, Shifa International Hospital, Islamabad, Pakistan
| | - Hamza H Khan
- Graduate, Shifa International Hospital, Islamabad, Pakistan
| | - Haider Ghazanfar
- Department of Internal Medicine, Shifa International Hospital, Islamabad, Pakistan
| | - Zarak H Khan
- Department of Medicine, Shifa College of Medicine
| | - Salman Mansoor
- Department of Neurology, Shifa International Hospital, Islamabad, Pakistan
| | | | | | - Bilal Zafar
- Internal Medicine, Shifa College of Medicine
| | - Usman Tariq
- Internal Medicine, Shifa College of Medicine
| | - Shuja A Malik
- Department of Medicine, Shifa International Hospital, Islamabad, Pakistan
| |
Collapse
|
33
|
Hemon P, Renaudineau Y, Debant M, Le Goux N, Mukherjee S, Brooks W, Mignen O. Calcium Signaling: From Normal B Cell Development to Tolerance Breakdown and Autoimmunity. Clin Rev Allergy Immunol 2017; 53:141-165. [DOI: 10.1007/s12016-017-8607-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Esteve-Solé A, Teixidó I, Deyà-Martínez A, Yagüe J, Plaza-Martín AM, Juan M, Alsina L. Characterization of the Highly Prevalent Regulatory CD24 hiCD38 hi B-Cell Population in Human Cord Blood. Front Immunol 2017; 8:201. [PMID: 28326080 PMCID: PMC5339297 DOI: 10.3389/fimmu.2017.00201] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/14/2017] [Indexed: 12/18/2022] Open
Abstract
The newborn's immune system must transition from a sterile haploidentical uterus to the world full of antigens. Regulatory B-cells (Breg; broadly defined as CD19+CD24hiCD38hi) are tolerance promoters in the adult immune system. They can inhibit IFN-γ and IL-17 production by T-cells and are essential in different conditions, including pregnancy. Breg have still not been well characterized in umbilical cord blood, where we hypothesize that they are pivotal in the achievement of tolerance. We studied CD19+CD24hiCD38hi Breg in healthy umbilical cord blood (hUCB) compared to healthy peripheral adult blood (hAPB). Total numbers of Breg were increased in hUCB compared to hAPB (34.39 vs. 9.49%; p = 0.0002), especially in the marginal zone-like B-cell subset, in which the most marked difference could be observed between hUCB and hAPB (60.80 vs. 4.94%; p = 0.1). CD24hiCD38hi subset in hUCB produced IL-10 and inhibited T-cell IFN-γ [1.63 vs. 0.95 stimulation ratio (SR); p = 0.004] and IL-4 (1.63 vs. 1.44 SR; p = 0.39) production. Phenotypically, hUCB Breg cells presented IgMhiIgDhiCD5+CD10+CD27- markers, similar to those described in hAPB Breg cells, but they showed increased IgM concentration and decreased expression of CD22 and CD73 markers. Our work characterized the frequency, phenotype, and function of Breg in hUCB, which may contribute to understanding of immune tolerance during pregnancy, paving the way to a new approach to immune-related diseases in the fetus and the newborn.
Collapse
Affiliation(s)
- Ana Esteve-Solé
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain; Functional Unit of Clinical Immunology, Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| | - Irene Teixidó
- Materno-Fetal Medicine Department Hospital Clínic de Barcelona (HCB) , Barcelona , Spain
| | - Angela Deyà-Martínez
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain; Functional Unit of Clinical Immunology, Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| | - Jordi Yagüe
- Immunology Service, Biomedic Diagnostic Center, HCB Universitat de Barcelona, IDIBAPS , Barcelona , Spain
| | - Ana M Plaza-Martín
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu , Esplugues de Llobregat , Spain
| | - Manel Juan
- Functional Unit of Clinical Immunology, Sant Joan de Déu-Hospital Clinic, Barcelona, Spain; Immunology Service, Biomedic Diagnostic Center, HCB Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - Laia Alsina
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain; Functional Unit of Clinical Immunology, Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| |
Collapse
|
35
|
Bhide GP, Colley KJ. Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Histochem Cell Biol 2017; 147:149-174. [PMID: 27975143 PMCID: PMC7088086 DOI: 10.1007/s00418-016-1520-x] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/18/2022]
Abstract
Sialylated N-glycans play essential roles in the immune system, pathogen recognition and cancer. This review approaches the sialylation of N-glycans from three perspectives. The first section focuses on the sialyltransferases that add sialic acid to N-glycans. Included in the discussion is a description of these enzymes' glycan acceptors, conserved domain organization and sequences, molecular structure and catalytic mechanism. In addition, we discuss the protein interactions underlying the polysialylation of a select group of adhesion and signaling molecules. In the second section, the biosynthesis of sialic acid, CMP-sialic acid and sialylated N-glycans is discussed, with a special emphasis on the compartmentalization of these processes in the mammalian cell. The sequences and mechanisms maintaining the sialyltransferases and other glycosylation enzymes in the Golgi are also reviewed. In the final section, we have chosen to discuss processes in which sialylated glycans, both N- and O-linked, play a role. The first part of this section focuses on sialic acid-binding proteins including viral hemagglutinins, Siglecs and selectins. In the second half of this section, we comment on the role of sialylated N-glycans in cancer, including the roles of β1-integrin and Fas receptor N-glycan sialylation in cancer cell survival and drug resistance, and the role of these sialylated proteins and polysialic acid in cancer metastasis.
Collapse
Affiliation(s)
- Gaurang P Bhide
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 S. Ashland Avenue, MC669, Chicago, IL, 60607, USA
| | - Karen J Colley
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 S. Ashland Avenue, MC669, Chicago, IL, 60607, USA.
| |
Collapse
|
36
|
SHP-1 is directly activated by the aryl hydrocarbon receptor and regulates BCL-6 in the presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol Appl Pharmacol 2016; 310:41-50. [PMID: 27546522 DOI: 10.1016/j.taap.2016.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 01/17/2023]
Abstract
The environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which is a strong AHR agonist, causes significant suppression of human B cell activation and differentiation. The current studies describe the identification of Src homology phosphatase 1 (SHP-1) encoded by the gene PTPN6 as a putative regulator of TCDD-mediated suppression of B cell activation. Shp-1 was initially identified through a genome-wide analysis of AHR binding in mouse B cells in the presence of TCDD. The binding of AHR to the PTPN6 promoter was further confirmed using electrophoretic mobility shift assays in which, specific binding of AHR was detected at four putative DRE sites within PTPN6 promoter. Time-course measurements performed in human B cells highlighted a significant increase in SHP-1 mRNA and protein levels in the presence of TCDD. The changes in the protein levels of SHP-1 were also observed in a TCDD concentration-dependent manner. The increase in SHP-1 levels was also seen to occur due to a change in early signaling events in the presence of TCDD. We have shown that BCL-6 regulates B cell activation by repressing activation marker CD80 in the presence of TCDD. TCDD-treatment led to a significant increase in the double positive (SHP-1hi BCL-6hi) population. Interestingly, treatment of naïve human B cells with SHP-1 inhibitor decreased BCL-6 protein levels suggesting possible regulation of BCL-6 by SHP-1 for the first time. Collectively, these results suggest that SHP-1 is regulated by AHR in the presence of TCDD and may, in part through BCL-6, regulate TCDD-mediated suppression of human B cell activation.
Collapse
|
37
|
Liu C, Jiang S, Wang M, Wang L, Chen H, Xu J, Lv Z, Song L. A novel siglec (CgSiglec-1) from the Pacific oyster (Crassostrea gigas) with broad recognition spectrum and inhibitory activity to apoptosis, phagocytosis and cytokine release. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:136-144. [PMID: 27032602 DOI: 10.1016/j.dci.2016.03.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/24/2016] [Accepted: 03/24/2016] [Indexed: 06/05/2023]
Abstract
Sialic acid binding immunoglobulin-type lectin (siglec) belongs to the immunoglobulin superfamily (IgSF), which acts as regulator involved in glycan recognition and signal transduction in the immune and nervous systems. In the present study, a siglec gene (designated CgSiglec-1) was characterized from the Pacific oyster, Crassostrea gigas. The cDNA of CgSiglec-1 was of 1251 bp encoding a predicted polypeptide of 416 amino acids. CgSiglec-1 was composed of two I-set immunoglobulin (Ig) domains, one transmembrane (TM) domain and two ITIM motifs, sharing a sequence similarity with vertebrate CD22 homologs. The mRNA expression of CgSiglec-1 could be detected in all the selected tissues, with the highest level in hemocytes and labial palps. The confocal analysis revealed that CgSiglec-1 mainly distributed on the cytoplasmic membrane of the oyster hemocytes. In addition, the mRNA transcripts of CgSiglec-1 in hemocytes increased significantly (4.29-fold to that of control group, p < 0.05) after Vibrio splendidus stimulation. The recombinant CgSiglec-1 protein (rCgSiglec-1) could bind to poly sialic acid (pSIAS), lipopolysaccharides (LPS) and peptidoglycan (PGN) in a dose-dependent manner. The blockade of CgSiglec-1 by specific polyclonal antibodies could enhance the LPS-induced cell apoptosis, phagocytosis towards V. splendidus and the release of cytokines, such as CgTNF-1, CgIFNLP and CgIL-17. The results collectively indicated that CgSiglec-1 could act as a bridge molecule between invader recognition and signal transduction cascade, and modulate the immune response by inhibiting various important processes of immunity in oyster.
Collapse
Affiliation(s)
- Conghui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiachao Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
38
|
Satake N, Duong C, Yoshida S, Oestergaard M, Chen C, Peralta R, Guo S, Seth PP, Li Y, Beckett L, Chung J, Nolta J, Nitin N, Tuscano JM. Novel Targeted Therapy for Precursor B Cell Acute Lymphoblastic Leukemia: anti-CD22 Antibody-MXD3 Antisense Oligonucleotide Conjugate. Mol Med 2016; 22:632-642. [PMID: 27455414 DOI: 10.2119/molmed.2015.00210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 07/13/2016] [Indexed: 12/17/2022] Open
Abstract
The exponential rise in molecular and genomic data has generated a vast array of therapeutic targets. Oligonucleotide-based technologies to down regulate these molecular targets have promising therapeutic efficacy. However, there is relatively limited success in translating this into effective in vivo cancer therapeutics. The primary challenge is the lack of effective cancer cell-targeted delivery methods, particularly for a systemic disease such as leukemia. We developed a novel leukemia-targeting compound composed of a monoclonal antibody directly conjugated to an antisense oligonucleotide (ASO). Our compound uses an ASO that specifically targets the transcription factor MAX dimerization protein 3 (MXD3), which was previously identified to be critical for precursor B cell (preB) acute lymphoblastic leukemia (ALL) cell survival. The MXD3 ASO was conjugated to an anti-CD22 antibody (αCD22 Ab) that specifically targets most preB ALL. We demonstrated that the αCD22 Ab-ASO conjugate treatment showed MXD3 protein knockdown and leukemia cell apoptosis in vitro. We also demonstrated that the conjugate treatment showed cytotoxicity in normal B cells, but not in other hematopoietic cells, including hematopoietic stem cells. Furthermore, the conjugate treatment at the lowest dose tested (0.2mg/kg Ab for 6 doses - twice a week for 3 weeks) more than doubled the mouse survival time in both Reh (median survival time 20.5 vs. 42.5 days, p<0.001) and primary preB ALL (median survival time 29.3 vs. 63 days, p<0.001) xenograft models. Our conjugate that uses αCD22 Ab to target the novel molecule MXD3, which is highly expressed in preB ALL cells, appears to be a promising novel therapeutic approach.
Collapse
Affiliation(s)
| | | | | | | | - Cathy Chen
- Department of Pediatrics.,Stem Cell Program
| | | | | | | | - Yueju Li
- Department of Public Health Sciences
| | | | | | | | - Nitin Nitin
- Departments of Food Science & Technology and Biological & Agricultural Engineering
| | - Joseph M Tuscano
- Department of Internal Medicine, University of California, Davis
| |
Collapse
|
39
|
Alvarez Rojas CA, Scheerlinck JP, Ansell BRE, Hall RS, Gasser RB, Jex AR. Time-Course Study of the Transcriptome of Peripheral Blood Mononuclear Cells (PBMCs) from Sheep Infected with Fasciola hepatica. PLoS One 2016; 11:e0159194. [PMID: 27438474 PMCID: PMC4954650 DOI: 10.1371/journal.pone.0159194] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/28/2016] [Indexed: 02/02/2023] Open
Abstract
Fasciola hepatica is a parasitic trematode that infects a wide range of mammalian hosts, including livestock and humans, in temperate and tropical regions globally. This trematode causes the disease fascioliasis, which consists of an acute phase (≤ 12 weeks) during which juvenile parasites migrate through the host liver tissues, and a chronic phase (> 12 weeks) following the establishment of adult parasites in the liver bile ducts. Few studies have explored the progression of the host response over the course of Fasciola infection in the same animals. In this study, we characterized transcriptomic changes in peripheral blood mononuclear cells (PBMCs) collected from sheep at three time points over the first eight weeks of infection relative to uninfected controls. In total, 183 and 76 genes were found to be differentially transcribed at two and eight weeks post-infection respectively. Functional and pathway analysis of differentially transcribed genes revealed changes related to T-cell activation that may underpin a Th2-biased immune response against this parasite. This first insight into the dynamics of host responses during the early stages of infection improves the understanding of the pathogenesis of acute fascioliasis, informs vaccine development and presents a set of PBMC markers with diagnostic potential.
Collapse
Affiliation(s)
- Cristian A Alvarez Rojas
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jean-Pierre Scheerlinck
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Brendan R E Ansell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ross S Hall
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Population Health and Immunity, Walter and Eliza Hall Institute, Parkville, 3052, Australia
| |
Collapse
|
40
|
Bagdonaite I, Wandall HH, Litvinov IV, Nastasi C, Becker JC, Dabelsteen S, Geisler C, Bonefeld CM, Zhang Q, Wasik MA, Zhou Y, Sasseville D, Ødum N, Woetmann A. Ectopic expression of a novel CD22 splice-variant regulates survival and proliferation in malignant T cells from cutaneous T cell lymphoma (CTCL) patients. Oncotarget 2016; 6:14374-84. [PMID: 25957418 PMCID: PMC4546473 DOI: 10.18632/oncotarget.3720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/03/2015] [Indexed: 02/07/2023] Open
Abstract
CD22 is a member of the Sialic acid-binding Ig-like lectin (Siglec) family of lectins described to be exclusively present in B lymphocytes and B cell-derived neoplasms. Here, we describe a novel splice form of CD22 (designated CD22âN), which lacks the N-terminal domain as demonstrated by exon-specific RT-PCR and differential recognition by anti-CD22 antibodies. Importantly, CD22âN mRNA is expressed in skin lesions from 39 out of 60 patients with cutaneous T cell lymphoma (CTCL), whereas few patients (6 out of 60) expresses full-length, wild type CD22 (CD22wt). In addition, IHC staining of tumor biopsies confirmed the expression of CD22 in CD4+ T cells. Moreover, four out of four malignant T cell lines express CD22: Two cell lines express CD22âN (MyLa2059 and PB2B) and two express CD22wt (MAC-1 and MAC-2A). siRNA-mediated silencing of CD22 impairs proliferation and survival of malignant T cells, demonstrating a functional role for both CD22âN and CD22wt in these cells.In conclusion, we provide the first evidence for an ectopic expression of CD22 and a novel splice variant regulating malignant proliferation and survival in CTCL. Analysis of expression and function of CD22 in cutaneous lymphomas may form the basis for development of novel targeted therapies for our patients.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ivan V Litvinov
- Division of Dermatology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Claudia Nastasi
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jürgen C Becker
- General Dermatology, Medical University of Graz, Graz, Austria
| | - Sally Dabelsteen
- Department of Oral Medicine and Pathology, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Bonefeld
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Qian Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
| | - Youwen Zhou
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | - Denis Sasseville
- Division of Dermatology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Niels Ødum
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Engagement of CD22 on B cells with the monoclonal antibody epratuzumab stimulates the phosphorylation of upstream inhibitory signals of the B cell receptor. J Cell Commun Signal 2016; 10:143-51. [PMID: 27125377 DOI: 10.1007/s12079-016-0322-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/14/2016] [Indexed: 12/14/2022] Open
Abstract
The binding of antigen to the B cell receptor (BCR) results in a cascade of signalling events that ultimately drive B cell activation. Uncontrolled B cell activation is regulated by negative feedback loops that involve inhibitory co-receptors such as CD22 and CD32B that exert their functions following phosphorylation of immunoreceptor tyrosine-based inhibition motifs (ITIMs). The CD22-targeted antibody epratuzumab has previously been shown to inhibit BCR-driven signalling events, but its effects on ITIM phosphorylation of CD22 and CD32B have not been properly evaluated. The present study therefore employed both immunoprecipitation and flow cytometry approaches to elucidate the effects of epratuzumab on direct phosphorylation of key tyrosine (Tyr) residues on both these proteins, using both transformed B cell lines and primary human B cells. Epratuzumab induced the phosphorylation of Tyr(822) on CD22 and enhanced its co-localisation with SHP-1. Additionally, in spite of high basal phosphorylation of other key ITIMs on CD22, in primary human B cells epratuzumab also enhanced phosphorylation of Tyr(807), a residue involved in the recruitment of Grb2. Such initiation events could explain the effects of epratuzumab on downstream signalling in B cells. Finally, we were able to demonstrate that epratuzumab stimulated the phosphorylation of Tyr(292) on the low affinity inhibitory Fc receptor CD32B which would further attenuate BCR-induced signalling. Together, these data demonstrate that engagement of CD22 with epratuzumab leads to the direct phosphorylation of key upstream inhibitory receptors of BCR signalling and may help to explain how this antibody modulates B cell function.
Collapse
|
42
|
Yazdani R, Abolhassani H, Rezaei N, Azizi G, Hammarström L, Aghamohammadi A. Evaluation of Known Defective Signaling-Associated Molecules in Patients Who Primarily Diagnosed as Common Variable Immunodeficiency. Int Rev Immunol 2016; 35:7-24. [DOI: 10.3109/08830185.2015.1136306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Gasparrini F, Feest C, Bruckbauer A, Mattila PK, Müller J, Nitschke L, Bray D, Batista FD. Nanoscale organization and dynamics of the siglec CD22 cooperate with the cytoskeleton in restraining BCR signalling. EMBO J 2016; 35:258-80. [PMID: 26671981 PMCID: PMC4741297 DOI: 10.15252/embj.201593027] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 11/09/2022] Open
Abstract
Receptor organization and dynamics at the cell membrane are important factors of signal transduction regulation. Using super-resolution microscopy and single-particle tracking, we show how the negative coreceptor CD22 works with the cortical cytoskeleton in restraining BCR signalling. In naïve B cells, we found endogenous CD22 to be highly mobile and organized into nanodomains. The landscape of CD22 and its lateral diffusion were perturbed either in the absence of CD45 or when the CD22 lectin domain was mutated. To understand how a relatively low number of CD22 molecules can keep BCR signalling in check, we generated Brownian dynamic simulations and supported them with ex vivo experiments. This combined approach suggests that the inhibitory function of CD22 is influenced by its nanoscale organization and is ensured by its fast diffusion enabling a "global BCR surveillance" at the plasma membrane.
Collapse
Affiliation(s)
| | - Christoph Feest
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, UK
| | - Andreas Bruckbauer
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, UK
| | - Pieta K Mattila
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, UK
| | - Jennifer Müller
- Chair of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Lars Nitschke
- Chair of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Dennis Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Facundo D Batista
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
44
|
Heizmann B, Sellars M, Macias-Garcia A, Chan S, Kastner P. Ikaros limits follicular B cell activation by regulating B cell receptor signaling pathways. Biochem Biophys Res Commun 2016; 470:714-720. [PMID: 26775846 DOI: 10.1016/j.bbrc.2016.01.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/09/2016] [Indexed: 01/14/2023]
Abstract
The Ikaros transcription factor is essential for early B cell development, but its effect on mature B cells is debated. We show that Ikaros is required to limit the response of naive splenic B cells to B cell receptor signals. Ikaros deficient follicular B cells grow larger and enter cell cycle faster after anti-IgM stimulation. Unstimulated mutant B cells show deregulation of positive and negative regulators of signal transduction at the mRNA level, and constitutive phosphorylation of ERK, p38, SYK, BTK, AKT and LYN. Stimulation results in enhanced and prolonged ERK and p38 phosphorylation, followed by hyper-proliferation. Pharmacological inhibition of ERK and p38 abrogates the increased proliferative response of Ikaros deficient cells. These results suggest that Ikaros functions as a negative regulator of follicular B cell activation.
Collapse
Affiliation(s)
- Beate Heizmann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - MacLean Sellars
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France; David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Alejandra Macias-Garcia
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France; Institute for Medical Engineering and Science at MIT, Cambridge, MA 02139, USA
| | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France.
| | - Philippe Kastner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France; Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
45
|
Garrett-Sinha LA, Kearly A, Satterthwaite AB. The Role of the Transcription Factor Ets1 in Lupus and Other Autoimmune Diseases. Crit Rev Immunol 2016; 36:485-510. [PMID: 28845756 DOI: 10.1615/critrevimmunol.2017020284] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by excess B- and T-cell activation, the development of autoantibodies against self-antigens including nuclear antigens, and immune complex deposition in target organs, which triggers an inflammatory response and tissue damage. The genetic and environmental factors that contribute to the development of SLE have been studied extensively in both humans and mouse models of the disease. One of the important genetic contributions to SLE development is an alteration in the expression of the transcription factor Ets1, which regulates the functional differentiation of lymphocytes. Here, we review the genetic, biochemical, and immunological studies that have linked low levels of Ets1 to aberrant lymphocyte differentiation and to the pathogenesis of SLE.
Collapse
Affiliation(s)
- Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203
| | - Alyssa Kearly
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203
| | - Anne B Satterthwaite
- Department of Internal Medicine, Rheumatic Diseases Division; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
46
|
Gao Y, Nai W, Yang L, Lu Z, Shi P, Jin H, Wen H, Wang G. Construction of an immunorelated protein-protein interaction network for clarifying the mechanism of burn. Burns 2015; 42:405-13. [PMID: 26739088 DOI: 10.1016/j.burns.2015.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 06/20/2015] [Accepted: 06/24/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIM Severe burn is known to induce a series of pathological responses resulting in increased susceptibility to systemic inflammatory response and multiple organ failure, but the underlying molecular mechanism remains unclear at present. The main aim of this study was to expand our understanding of the events leading to circulating leukocyte response after burn by subjecting the gene expression profiles to a bioinformatic analysis. MATERIALS AND METHODS Comprehensive gene expression analysis was performed to identify differentially expressed genes (DEGs) using the expression profile GSE7404 (Mus musculus, circulating leukocyte, 25% of total body surface area (TBSA), full thickness) downloaded from the Gene Expression Omnibus, followed by the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. In addition, a postburn protein-protein interaction (PPI) network was constructed to identify potential biomarkers. RESULTS Maximum changes in the gene expression profile were detected 1 day post burn. Separate Gene Ontology (GO) functional enrichment analysis for upregulated and downregulated DEGs revealed significant alterations of genes related to biological process such as "response to stimuli," "metabolic," "cellular and immune system processes," "biological regulation," and "death" in the leukocyte transcriptome after the burn. The KEGG pathway enrichment analysis showed that the upregulated DEGs were significantly enriched in the nodes of immunorelated and signal transduction-related pathways, and the downregulated genes were significantly enriched for the immunorelated pathways. The PPI network and module analysis revealed that, 1 day after the burn, lymphocyte-specific protein tyrosine kinase (Lck) (downregulated), Jun (upregulated), Cd19 (downregulated), Stat1 (downregulated), and Cdk1 (upregulated) were located centrally in both the PPI network and modules. CONCLUSIONS Based on an integrated bioinformatic analysis, we concluded that Lck, Jun, Cd19, Stat1, and Cdk1 may be critical 1 day after the burn. These findings expand our understanding of the molecular mechanisms of this important pathological process. Further studies are needed to support our work, focused on identifying candidate biomarkers with sufficient predictive power to act as prognostic and therapeutic biomarkers for burn injury.
Collapse
Affiliation(s)
- Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenqing Nai
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Zhiyang Lu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Pengwei Shi
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hui Jin
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huangding Wen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guifang Wang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
47
|
Comabella M, Cantó E, Nurtdinov R, Río J, Villar LM, Picón C, Castilló J, Fissolo N, Aymerich X, Auger C, Rovira A, Montalban X. MRI phenotypes with high neurodegeneration are associated with peripheral blood B-cell changes. Hum Mol Genet 2015; 25:308-16. [DOI: 10.1093/hmg/ddv473] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/15/2015] [Indexed: 11/13/2022] Open
|
48
|
Chang CH, Wang Y, Gupta P, Goldenberg DM. Extensive crosslinking of CD22 by epratuzumab triggers BCR signaling and caspase-dependent apoptosis in human lymphoma cells. MAbs 2015; 7:199-211. [PMID: 25484043 PMCID: PMC4622945 DOI: 10.4161/19420862.2014.979081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epratuzumab has demonstrated therapeutic activity in patients with non-Hodgkin lymphoma, acute lymphoblastic leukemia, systemic lupus erythematosus, and Sjögren's syndrome, but its mechanism of affecting normal and malignant B cells remains incompletely understood. We reported previously that epratuzumab displayed in vitro cytotoxicity to CD22-expressing Burkitt lymphoma cell lines (Daudi and Ramos) only when immobilized on plates or combined with a crosslinking antibody plus a suboptimal amount of anti-IgM (1 μg/mL). Herein, we show that, in the absence of additional anti-IgM ligation, extensive crosslinking of CD22 by plate-immobilized epratuzumab induced intracellular changes in Daudi cells similar to ligating B-cell antigen receptor with a sufficiently high amount of anti-IgM (10 μg/mL). Specifically, either treatment led to phosphorylation of CD22, CD79a and CD79b, along with their translocation to lipid rafts, both of which were essential for effecting caspase-dependent apoptosis. Moreover, such immobilization induced stabilization of F-actin, phosphorylation of Lyn, ERKs and JNKs, generation of reactive oxygen species (ROS), decrease in mitochondria membrane potential (Δψm), upregulation of pro-apoptotic Bax, and downregulation of anti-apoptotic Bcl-xl and Mcl-1. The physiological relevance of immobilized epratuzumab was implicated by noting that several of its in vitro effects, including apoptosis, drop in Δψm, and generation of ROS, could be observed with soluble epratuzumab in Daudi cells co-cultivated with human umbilical vein endothelial cells. These results suggest that the in vivo mechanism of non-ligand-blocking epratuzumab may, in part, involve the unmasking of CD22 to facilitate the trans-interaction of B cells with vascular endothelium.
Collapse
Key Words
- 488-annexin V, Alexa Fluor 488-conjugated annexin V
- 7-AAD, 7-aminoactinomycin D, Syk, spleen tyrosine kinase
- Anti-IgM, F(ab’)2 fragment of affinity-purified goat anti-human IgM, Fc5μ fragment
- BCR
- BCR, B-cell antigen receptor
- BSA, bovine serum albumin
- CD22
- CM-H2DCF-DA, 2′,7′-dichlorodihydrofluorescein diacetate
- DNP, 2,4-dinitrophenyl
- EC, endothelial cells
- ERKs, extracellular signal-regulated kinases
- FBS, fetal bovine serum
- FITC-DNase I, fluorescein isothiocyanate-conjugated DNase I
- GAH, F(ab′)2 fragment of affinity-purified goat anti-human IgG Fcγ fragment-specific
- HUV-EC
- HUV-EC, human umbilical vein endothelial cells
- ITIM, immunoreceptor tyrosine-based inhibition motif
- JNKs, c-Jun N-terminal kinases
- JP, jasplakinolide
- LatB, latrunculin B
- Lyn, Lck/Yes novel tyrosine kinase
- MAP kinases, mitogen-activated protein kinases
- MTS, (3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
- PARP, poly(ADP-ribose) polymerase
- PBS, phosphate-buffered saline
- PLCγ2, phospholipase C, isotype gamma 2
- ROS, reactive oxygen species
- Rhodamine-anti-IgG, rhodamine-conjugated F(ab′)2 fragment of affinity-purified goat anti-human IgG, F(ab′)2 fragment-specific
- TMRE/tetramethylrhodamine/ethyl ester
- epratuzumab
- human B-cell lymphoma
- immobilized
- mIgM, membrane IgM
- Δψm, mitochondria membrane potential
Collapse
|
49
|
Jiang Y, Zhou H, Ma D, Chen ZK, Cai X. MicroRNA-19a and CD22 Comprise a Feedback Loop for B Cell Response in Sepsis. Med Sci Monit 2015; 21:1548-55. [PMID: 26017478 PMCID: PMC4459571 DOI: 10.12659/msm.894321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Background MicroRNA-19a (miR-19a), an oncogenic microRNA, has been recently reported to target CD22 in B cell lymphoma cell lines, but its role in inflammatory response is unclear. CD22 is a negative regulator for BCR signaling, and we hypothesize that miR-19a regulates B cell response by targeting CD22 in sepsis. Material/Methods In order to determine whether miR-19a-CD22 pathway was involved in sepsis, and what role it played in the regulatory mechanisms, we detected the levels of miR-19a in B cells obtained from patients with sepsis, and measured the levels of miR-19a and CD22 expression in B cells activated by LPS in vitro. Additionally, we investigated the correlation between miR-19a and CD22, as well as the influence of this pathway on BCR signaling, in transfected B cells. Results We found that septic patients displayed up-regulated miR-19a in B cells. In vitro, miR-19a was increased in activated B cells, with CD22 expression initially enhanced but subsequently decreased. Moreover, overexpression of miR-19a resulted in an amplified BCR signaling, while overexpression of CD22 attenuated the effect of miR-19a and increased its expression. Conclusions Our study demonstrated that miR-19a and CD22 comprised a feedback loop for B cell response in sepsis, providing a potential therapeutic target to recover the immune homeostasis.
Collapse
Affiliation(s)
- Yinan Jiang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Ministry of Health, and Key Laboratory of Ministry of Education, Wuhan, Hubei, China (mainland)
| | - Hongmin Zhou
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Dandan Ma
- Department of General Surgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei, China (mainland)
| | - Zhonghua Klaus Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Ministry of Health, and Key Laboratory of Ministry of Education, Wuhan, Hubei, China (mainland)
| | - Xun Cai
- Department of General Surgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei, China (mainland)
| |
Collapse
|
50
|
Chen X, Li G, Wan Z, Liu C, Zeng Y, Liu W. How B cells remember? A sophisticated cytoplasmic tail of mIgG is pivotal for the enhanced transmembrane signaling of IgG-switched memory B cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:89-94. [PMID: 26004919 DOI: 10.1016/j.pbiomolbio.2015.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/26/2022]
Abstract
Antibody memory is critical for protection against many human infectious diseases and is the basis for nearly all current human vaccines. Isotype switched immunoglobulin (Ig) G-expressing memory B cells are considered as one of the fundaments for the rapid, high affinity and high-titered memory antibody response. The detailed molecular mechanism of the enhanced activation of IgG-switched memory B cells upon BCR engagement with antigens has been an elusive question in immunology. In this review, we tried to discuss all the exciting new advances revealing the molecular mechanisms of the transmembrane signaling through mIgG cytoplasmic tail in IgG-switched memory B cells.
Collapse
Affiliation(s)
- Xiangjun Chen
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Infectious Diseases, HangZhou, China
| | - Gen Li
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhengpeng Wan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ce Liu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingyue Zeng
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Infectious Diseases, HangZhou, China.
| |
Collapse
|