1
|
Yu X, Matico RE, Miller R, Chauhan D, Van Schoubroeck B, Grauwen K, Suarez J, Pietrak B, Haloi N, Yin Y, Tresadern GJ, Perez-Benito L, Lindahl E, Bottelbergs A, Oehlrich D, Van Opdenbosch N, Sharma S. Structural basis for the oligomerization-facilitated NLRP3 activation. Nat Commun 2024; 15:1164. [PMID: 38326375 PMCID: PMC10850481 DOI: 10.1038/s41467-024-45396-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
The NACHT-, leucine-rich-repeat-, and pyrin domain-containing protein 3 (NLRP3) is a critical intracellular inflammasome sensor and an important clinical target against inflammation-driven human diseases. Recent studies have elucidated its transition from a closed cage to an activated disk-like inflammasome, but the intermediate activation mechanism remains elusive. Here we report the cryo-electron microscopy structure of NLRP3, which forms an open octamer and undergoes a ~ 90° hinge rotation at the NACHT domain. Mutations on open octamer's interfaces reduce IL-1β signaling, highlighting its essential role in NLRP3 activation/inflammasome assembly. The centrosomal NIMA-related kinase 7 (NEK7) disrupts large NLRP3 oligomers and forms NEK7/NLRP3 monomers/dimers which is a critical step preceding the assembly of the disk-like inflammasome. These data demonstrate an oligomeric cooperative activation of NLRP3 and provide insight into its inflammasome assembly mechanism.
Collapse
Affiliation(s)
- Xiaodi Yu
- Johnson & Johnson Innovation Medicine, Spring House, PA, 19044, USA.
| | - Rosalie E Matico
- Johnson & Johnson Innovation Medicine, Spring House, PA, 19044, USA
| | - Robyn Miller
- Johnson & Johnson Innovation Medicine, Spring House, PA, 19044, USA
| | - Dhruv Chauhan
- Johnson & Johnson Innovation Medicine, J&J Interventional Oncology, Beerse, Belgium
| | | | - Karolien Grauwen
- Johnson & Johnson Innovation Medicine, J&J Interventional Oncology, Beerse, Belgium
| | - Javier Suarez
- Johnson & Johnson Innovation Medicine, Spring House, PA, 19044, USA
| | - Beth Pietrak
- Johnson & Johnson Innovation Medicine, Spring House, PA, 19044, USA
| | - Nandan Haloi
- Department of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yanting Yin
- Johnson & Johnson Innovation Medicine, Spring House, PA, 19044, USA
| | | | - Laura Perez-Benito
- Johnson & Johnson Innovation Medicine, Discovery Sciences, Beerse, Belgium
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Astrid Bottelbergs
- Johnson & Johnson Innovation Medicine, Discovery Sciences, Beerse, Belgium
| | - Daniel Oehlrich
- Johnson & Johnson Innovation Medicine, Discovery Sciences, Beerse, Belgium
| | - Nina Van Opdenbosch
- Johnson & Johnson Innovation Medicine, J&J Interventional Oncology, Beerse, Belgium
| | - Sujata Sharma
- Johnson & Johnson Innovation Medicine, Spring House, PA, 19044, USA
| |
Collapse
|
2
|
Wawrzyńczak A, Jarmolińska S, Nowak I. Nanostructured KIT-6 materials functionalized with sulfonic groups for catalytic purposes. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Mesenchymal Stromal Cells Directly Promote Inflammation by Canonical NLRP3 and Non-canonical Caspase-11 Inflammasomes. EBioMedicine 2018; 32:31-42. [PMID: 29807832 PMCID: PMC6020748 DOI: 10.1016/j.ebiom.2018.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) based therapy is a promising approach to treat inflammatory disorders. However, therapeutic effect is not always achieved. Thus the mechanism involved in inflammation requires further elucidation. To explore the mechanisms by which MSCs respond to inflammatory stimuli, we investigated whether MSCs employed inflammasomes to participate in inflammation. Using in vitro and in vivo models, we found that canonical NLRP3 and non-canonical caspase-11 inflammasomes were activated in bone-associated MSCs (BA-MSCs) to promote the inflammatory response. The NLRP3 inflammasome was activated to mainly elicit IL-1β/18 release, whereas the caspase-11 inflammasome managed pyroptosis. Furthermore, we sought a small molecule component (66PR) to inhibit the activation of inflammasomes in BA-MSCs, which consequently improved their survival and therapeutic potential in inflammation bowel diseases. These current findings indicated that MSCs themselves could directly promote the inflammatory response by an inflammasome-dependent pathway. Our observations suggested that inhibition of the proinflammatory property may improve MSCs utilization in inflammatory disorders. NLRP3 and caspase-11 inflammasomes were activated in bone associated MSCs after stimulation. NLRP3 inflammasome mainly secreted IL-1β/18, whereas caspase-11 inflammasome managed pyroptosis in bone associated MSCs. Inhibition of inflammasomes in bone associated MSCs benefits their utilization for inflammatory diseases therapy.
Abnormal inflammations cause currently high incidence of diseases worldwide, such as sepsis, allergic reactions, and even cancer. But the therapy of inflammatory diseases is far from satisfaction heretofore. MSCs are great interest to treat inflammatory disorders. However, many studies found their therapeutic effects were not always achieved. Further studies on the molecular mechanisms by which MSCs respond to the inflammatory microenvironment will undoubtedly promote applications in clinic. Here, we observed that MSCs promoted the inflammatory response by an inflammasome-dependent pathway. Regulation of this pathway improved MSCs to counter against inflammatory disorders.
Collapse
|
4
|
A group A Streptococcus ADP-ribosyltransferase toxin stimulates a protective interleukin 1β-dependent macrophage immune response. mBio 2015; 6:e00133. [PMID: 25759502 PMCID: PMC4453525 DOI: 10.1128/mbio.00133-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The M1T1 clone of group A Streptococcus (GAS) is associated with severe invasive infections, including necrotizing fasciitis and septicemia. During invasive M1T1 GAS disease, mutations in the covRS regulatory system led to upregulation of an ADP-ribosyltransferase, SpyA. Surprisingly, a GAS ΔspyA mutant was resistant to killing by macrophages and caused higher mortality with impaired bacterial clearance in a mouse intravenous challenge model. GAS expression of SpyA triggered macrophage cell death in association with caspase-1-dependent interleukin 1β (IL-1β) production, and differences between wild-type (WT) and ΔspyA GAS macrophage survival levels were lost in cells lacking caspase-1, NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), or pro-IL-1β. Similar in vitro findings were identified in macrophage studies performed with pseudomonal exotoxin A, another ADP-ribosylating toxin. Thus, SpyA triggers caspase-1-dependent inflammatory cell death in macrophages, revealing a toxin-triggered IL-1β-dependent innate immune response pathway critical in defense against invasive bacterial infection. Group A Streptococcus (GAS) is a leading human pathogen capable of producing invasive infections even in healthy individuals. GAS bacteria produce a toxin called SpyA that modifies host proteins through a process called ADP ribosylation. We describe how macrophages, frontline defenders of the host innate immune system, respond to SpyA by undergoing a specialized form of cell death in which they are activated to release the proinflammatory cytokine molecule interleukin 1β (IL-1β). Release of IL-1β activates host immune cell clearance of GAS, as we demonstrated in tissue culture models of macrophage bacterial killing and in vivo mouse infectious-challenge experiments. Similar macrophage responses to a related toxin of Pseudomonas bacteria were also shown. Thus, macrophages recognize certain bacterial toxins to activate a protective immune response in the host.
Collapse
|
5
|
He S, Mao X, Sun H, Shirakawa T, Zhang H, Wang X. Potential therapeutic targets in the process of nucleic acid recognition: opportunities and challenges. Trends Pharmacol Sci 2015; 36:51-64. [DOI: 10.1016/j.tips.2014.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 10/18/2014] [Accepted: 10/28/2014] [Indexed: 02/07/2023]
|
6
|
Carden S, Okoro C, Dougan G, Monack D. Non-typhoidal Salmonella Typhimurium ST313 isolates that cause bacteremia in humans stimulate less inflammasome activation than ST19 isolates associated with gastroenteritis. Pathog Dis 2014; 73:ftu023. [PMID: 25808600 PMCID: PMC4399442 DOI: 10.1093/femspd/ftu023] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2014] [Indexed: 02/07/2023] Open
Abstract
Salmonella is an enteric pathogen that causes a range of diseases in humans. Non-typhoidal Salmonella (NTS) serovars such as Salmonella enterica serovar Typhimurium generally cause a self-limiting gastroenteritis whereas typhoidal serovars cause a systemic disease, typhoid fever. However, S. Typhimurium isolates within the multi-locus sequence type ST313 have emerged in sub-Saharan Africa as a major cause of bacteremia in humans. The S. Typhimurium ST313 lineage is phylogenetically distinct from classical S. Typhimurium lineages, such as ST19, that cause zoonotic gastroenteritis worldwide. Previous studies have shown that the ST313 lineage has undergone genome degradation when compared to the ST19 lineage, similar to that observed for typhoidal serovars. Currently, little is known about phenotypic differences between ST313 isolates and other NTS isolates. We find that representative ST313 isolates invade non-phagocytic cells less efficiently than the classical ST19 isolates that are more commonly associated with gastroenteritis. In addition, ST313 isolates induce less Caspase-1-dependent macrophage death and IL-1β release than ST19 isolates. ST313 isolates also express relatively lower levels of mRNA of the genes encoding the SPI-1 effector sopE2 and the flagellin, fliC, providing possible explanations for the decrease in invasion and inflammasome activation. The ST313 isolates have invasion and inflammatory phenotypes that are intermediate; more invasive and inflammatory than Salmonella enterica serovar Typhi and less than ST19 isolates associated with gastroenteritis. This suggests that both phenotypically and at the genomic level ST313 isolates are evolving signatures that facilitate a systemic lifestyle in humans.
Collapse
Affiliation(s)
- Sarah Carden
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chinyere Okoro
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Denise Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Yang J, Xu H, Shao F. The immunological function of familial Mediterranean fever disease protein Pyrin. SCIENCE CHINA-LIFE SCIENCES 2014; 57:1156-61. [DOI: 10.1007/s11427-014-4758-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/11/2014] [Indexed: 02/04/2023]
|
8
|
Abstract
Proinflammatory caspases play important roles in innate immunity. Much attention has focused on caspase-1, which acts to eliminate pathogens by obliterating their replicative niches as well as alerting the host to their presence. Now, emerging data have shed light on the lesser-studied proinflammatory caspase-11 in the combat between host and pathogens. Using the new tools available, researchers are further elucidating the mechanisms by which caspase-11 contributes to host defense. Here, we review the emerging understanding of caspase-11 functions and the mechanisms of activation and discuss the implications for human disease.
Collapse
|
9
|
Hu Z, Yan C, Liu P, Huang Z, Ma R, Zhang C, Wang R, Zhang Y, Martinon F, Miao D, Deng H, Wang J, Chang J, Chai J. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 2013; 341:172-5. [PMID: 23765277 DOI: 10.1126/science.1236381] [Citation(s) in RCA: 304] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nucleotide-binding and oligomerization domain-like receptor (NLR) proteins oligomerize into multiprotein complexes termed inflammasomes when activated. Their autoinhibition mechanism remains poorly defined. Here, we report the crystal structure of mouse NLRC4 in a closed form. The adenosine diphosphate-mediated interaction between the central nucleotide-binding domain (NBD) and the winged-helix domain (WHD) was critical for stabilizing the closed conformation of NLRC4. The helical domain HD2 repressively contacted a conserved and functionally important α-helix of the NBD. The C-terminal leucine-rich repeat (LRR) domain is positioned to sterically occlude one side of the NBD domain and consequently sequester NLRC4 in a monomeric state. Disruption of ADP-mediated NBD-WHD or NBD-HD2/NBD-LRR interactions resulted in constitutive activation of NLRC4. Together, our data reveal the NBD-organized cooperative autoinhibition mechanism of NLRC4 and provide insight into its activation.
Collapse
Affiliation(s)
- Zehan Hu
- School of Life Sciences, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|