1
|
Teng Y, Xu H, He X, Zhuang Q, Lu H, Xu R, Xue D. LXRα agonist differentially regulates BAFF expression and biological effects in RAW264.7 cells depending on growth status: LXRα activation and BAFF signaling in RAW264.7 cells. Biochem Biophys Res Commun 2025; 742:151067. [PMID: 39632295 DOI: 10.1016/j.bbrc.2024.151067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
B- cell-activating factor (BAFF), which is essential for the survival and development of B cells, is mainly produced by myeloid cells such as macrophages. Abnormal macrophage infiltration and high BAFF expression in kidney allografts are associated with the occurrence and development of antibody-mediated rejection (ABMR). Nuclear hormone receptor Liver X receptors (LXRs), is a nonnegligible participant in regulating cholesterol metabolism and inflammatory responses. Nowadays the effects of LXRα activation on macrophages have been widely studied, however the effects of LXRα activation on BAFF expression and cell function due to the change of BAFF signaling have not yet been fully investigated. In the present study, LXRα activation alone was found to downregulate BAFF expression in quiescent RAW 264.7 cells, whereas LXRα agonist significantly upregulated BAFF expression in cells pretreated with lipopolysaccharide (LPS) for 6 h. The increased BAFF signaling promoted M1 polarization and enhanced cell viability, migration, and phagocytic ability. LXRα can directly bind to the BAFF promoter region and decrease BAFF expression in RAW264.7 cells. LXRα activation enhanced mitochondrial metabolism, which promoted BAFF expression in the LPS-activated cells. Our results indicate that subtle changes in the microenvironment would affect the biological function of macrophages, in which a variety of BAFF signaling pathways may also be involved, providing a new perspective on exploring the mechanism of allograft rejection and uncovering the potential reason for the unstable efficacy of anti-BAFF preparations in kidney transplant recipients.
Collapse
Affiliation(s)
- Yisa Teng
- Urology Department, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Haiyan Xu
- Urology Department, Third Affiliated Hospital of Soochow University, Changzhou, China.
| | - Xiaozhou He
- Urology Department, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qianfeng Zhuang
- Urology Department, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hao Lu
- Urology Department, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Renfang Xu
- Urology Department, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dong Xue
- Urology Department, Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
2
|
Zeng L, Yang K, Wu Y, Yu G, Yan Y, Hao M, Song T, Li Y, Chen J, Sun L. Telitacicept: A novel horizon in targeting autoimmunity and rheumatic diseases. J Autoimmun 2024; 148:103291. [PMID: 39146891 DOI: 10.1016/j.jaut.2024.103291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
BLyS and APRIL have the capability to bind to B cells within the body, allowing these cells to evade elimination when they should naturally be removed. While BLyS primarily plays a role in B cell development and maturation, APRIL is linked to B cell activation and the secretion of antibodies. Thus, in theory, inhibiting BLyS or APRIL could diminish the population of aberrant B cells that contribute to SLE and reduce disease activity in patients. Telitacicept functions by binding to and neutralizing the activities of both BLyS and APRIL, thus hindering the maturation and survival of plasma cells and fully developed B cells. The design of telitacicept is distinctive; it is not a monoclonal antibody but a TACI-Fc fusion protein generated through recombinant DNA technology. This fusion involves merging gene segments of the TACI protein, which can target BLyS/APRIL simultaneously, with the Fc gene segment of the human IgG protein. The TACI-Fc fusion protein exhibits the combined characteristics of both proteins. Currently utilized for autoimmune disease treatment, telitacicept is undergoing clinical investigations globally to assess its efficacy in managing various autoimmune conditions. This review consolidates information on the mechanistic actions, dosing regimens, pharmacokinetics, efficacy, and safety profile of telitacicept-a dual-targeted biological agent. It integrates findings from prior experiments and pharmacokinetic analyses in the treatment of RA and SLE, striving to offer a comprehensive overview of telitacicept's research advancements.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
| | - Yang Wu
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Yexing Yan
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Moujia Hao
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Tian Song
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuwei Li
- School of Mathematics and Computational Science, Hunan University of Science and Technology, Hunan, China
| | - Junpeng Chen
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA; Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China; Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China; Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Shimojima Y, Kishida D, Ichikawa T, Takamatsu R, Nomura S, Sekijima Y. Features of BAFF and APRIL receptors on circulating B cells in antineutrophil cytoplasmic antibody-associated vasculitis. Clin Exp Immunol 2023; 213:125-137. [PMID: 36794867 PMCID: PMC10324548 DOI: 10.1093/cei/uxad024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/17/2023] Open
Abstract
To investigate the features of circulating B cells, their expressing receptors, serum levels of B-cell activation factor of the TNF family (BAFF), and a proliferation-inducing ligand (APRIL) in antineutrophil cytoplasmic antibody-associated vasculitis (AAV). Blood samples from 24 patients with active AAV (a-AAV), 13 with inactive AAV (i-AAV), and 19 healthy controls (HC) were included in this study. The proportion of B cells and their expressing BAFF receptor (BAFF-R), transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), and B-cell maturation antigen were analyzed via flow cytometry. Serum levels of BAFF, APRIL, and interleukin (IL)-4, IL-6, IL-10, and IL-13 were also evaluated using an enzyme-linked immunosorbent assay. The proportion of plasmablasts (PB)/plasma cells (PC) and serum levels of BAFF, APRIL, IL-4, and IL-6 were significantly higher in a-AAV than in HC. Higher serum levels of BAFF, APRIL, and IL-4 were observed in i-AAV than in HC. Lower expression of BAFF-R on memory B cells and higher expression of TACI on CD19+ cells, immature B cells, and PB/PC were demonstrated in a-AAV and i-AAV than in HC. The population of memory B cells was positively associated with serum APRIL levels and BAFF-R expression in a-AAV. In conclusion, decreased expression of BAFF-R on memory B cells and increased expression of TACI on CD19+ cells, immature B cells, and PB/PC, as well as increased serum levels of BAFF and APRIL, were sustained even in the remission phase of AAV. Persistent aberrant signaling of BAFF/APRIL may contribute to disease relapse.
Collapse
Affiliation(s)
- Yasuhiro Shimojima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Dai Kishida
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Takanori Ichikawa
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Ryota Takamatsu
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Shun Nomura
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
4
|
Dadas O, Ertay A, Cragg MS. Delivering co-stimulatory tumor necrosis factor receptor agonism for cancer immunotherapy: past, current and future perspectives. Front Immunol 2023; 14:1147467. [PMID: 37180119 PMCID: PMC10167284 DOI: 10.3389/fimmu.2023.1147467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023] Open
Abstract
The tumor necrosis factor superfamily (TNFSF) and their receptors (TNFRSF) are important regulators of the immune system, mediating proliferation, survival, differentiation, and function of immune cells. As a result, their targeting for immunotherapy is attractive, although to date, under-exploited. In this review we discuss the importance of co-stimulatory members of the TNFRSF in optimal immune response generation, the rationale behind targeting these receptors for immunotherapy, the success of targeting them in pre-clinical studies and the challenges in translating this success into the clinic. The efficacy and limitations of the currently available agents are discussed alongside the development of next generation immunostimulatory agents designed to overcome current issues, and capitalize on this receptor class to deliver potent, durable and safe drugs for patients.
Collapse
Affiliation(s)
- Osman Dadas
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ayse Ertay
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mark S. Cragg
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
5
|
Block V, Sevdali E, Recher M, Abolhassani H, Hammarstrom L, Smulski CR, Baronio M, Plebani A, Proietti M, Speletas M, Warnatz K, Voll RE, Lougaris V, Schneider P, Eibel H. CVID-Associated B Cell Activating Factor Receptor Variants Change Receptor Oligomerization, Ligand Binding, and Signaling Responses. J Clin Immunol 2023; 43:391-405. [PMID: 36308663 PMCID: PMC9616699 DOI: 10.1007/s10875-022-01378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/23/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Binding of the B cell activating factor (BAFF) to its receptor (BAFFR) activates in mature B cells many essential pro-survival functions. Null mutations in the BAFFR gene result in complete BAFFR deficiency and cause a block in B cell development at the transition from immature to mature B cells leading therefore to B lymphopenia and hypogammaglobulinemia. In addition to complete BAFFR deficiency, single nucleotide variants encoding BAFFR missense mutations were found in patients suffering from common variable immunodeficiency (CVID), autoimmunity, or B cell lymphomas. As it remained unclear to which extent such variants disturb the activity of BAFFR, we performed genetic association studies and developed a cellular system that allows the unbiased analysis of BAFFR variants regarding oligomerization, signaling, and ectodomain shedding. METHODS In addition to genetic association studies, the BAFFR variants P21R, A52T, G64V, DUP92-95, P146S, and H159Y were expressed by lentiviral gene transfer in DG-75 Burkitt's lymphoma cells and analyzed for their impacts on BAFFR function. RESULTS Binding of BAFF to BAFFR was affected by P21R and A52T. Spontaneous oligomerization of BAFFR was disturbed by P21R, A52T, G64V, and P146S. BAFF-dependent activation of NF-κB2 was reduced by P21R and P146S, while interactions between BAFFR and the B cell antigen receptor component CD79B and AKT phosphorylation were impaired by P21R, A52T, G64V, and DUP92-95. P21R, G64V, and DUP92-95 interfered with phosphorylation of ERK1/2, while BAFF-induced shedding of the BAFFR ectodomain was only impaired by P21R. CONCLUSION Although all variants change BAFFR function and have the potential to contribute as modifiers to the development of primary antibody deficiencies, autoimmunity, and lymphoma, P21R is the only variant that was found to correlate positively with CVID.
Collapse
Affiliation(s)
- Violeta Block
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eirini Sevdali
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mike Recher
- Immunodeficiency Clinic and Laboratory, Medical Outpatient Unit and Department Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Lennart Hammarstrom
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Cristian R Smulski
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), San Carlos de Bariloche, Río Negro, Argentina
| | - Manuela Baronio
- Department of Clinical and Exp. Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Plebani
- Department of Clinical and Exp. Sciences, University of Brescia, Brescia, Italy
| | - Michele Proietti
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthaios Speletas
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vassilios Lougaris
- Department of Clinical and Exp. Sciences, University of Brescia, Brescia, Italy
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Hermann Eibel
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Alturaiki W. Considerations for Novel COVID-19 Mucosal Vaccine Development. Vaccines (Basel) 2022; 10:1173. [PMID: 35893822 PMCID: PMC9329946 DOI: 10.3390/vaccines10081173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Mucosal surfaces are the first contact sites of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Most SARS-CoV-2 vaccines induce specific IgG responses but provide limited mucosal immunity. Cytokine B-cell activation factor (BAFF) and A proliferation-inducing ligand (APRIL) in the tumor necrosis factor (TNF) superfamily play key immunological functions during B cell development and antibody production. Furthermore, homeostatic chemokines, such as C-X-C motif chemokine ligand 13 (CXCL13), chemokine (C-C motif) ligand 19 (CCL19), and CCL21, can induce B- and T-cell responses to infection and promote the formation of inducible bronchus-associated lymphoid tissues (iBALT), where specific local immune responses and memory cells are generated. We reviewed the role of BAFF, APRIL, CXCL13, CCL19, and CCL21 in the activation of local B-cell responses and antibody production, and the formation of iBALT in the lung following viral respiratory infections. We speculate that mucosal vaccines may offer more efficient protection against SARS-CoV-2 infection than systematic vaccines and hypothesize that a novel SARS-CoV-2 mRNA mucosal vaccine using BAFF/APRIL or CXCL13 as immunostimulants combined with the spike protein-encoding mRNA may enhance the efficiency of the local immune response and prevent the early stages of SARS-CoV-2 replication and the rapid viral clearance from the airways.
Collapse
Affiliation(s)
- Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| |
Collapse
|
7
|
Neutrophils recruited to immunization sites initiating vaccine-induced antibody responses by locally expressing BAFF. iScience 2022; 25:104453. [PMID: 35874922 PMCID: PMC9301880 DOI: 10.1016/j.isci.2022.104453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/23/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
Neutrophils played a key role in the innate immune responses. Less is known about whether and how the neutrophils recruited in the immunization sites affecting the vaccine-induced antibody responses. In the process of evaluating the efficacy of an oil-in-water emulsion-formulated vaccine in mice, we found that neutrophils were rapidly and massively recruited to immunization sites but were barely detected in the draining lymph nodes. Interestingly, B cell-activating factor (BAFF) was abundantly expressed in the recruiting neutrophils at a very early stage. The initial neutrophil-derived BAFF firstly brought about the B cell responses in the local part, then subsequently in lymphoid organs. Activated B cells produced more BAFF through TLR9-IRF5 signaling pathway, thereby amplifying the vaccine-induced antibody responses. Suppressing BAFF in the neutrophils could weaken the B cell activation and reduce the antibody production. The data indicate that vaccines endow neutrophils with the potential to orchestrate antibody responses at immunization sites. Neutrophils at immunization sites influencing subsequent immune responses Neutrophil-driven BAFF at immunization sites assisting B cell responses to vaccines Activated B cells produce more BAFF through TLR9-IRF5 signaling pathway BAFF-producing neutrophils orchestrate antibody responses at immunization sites
Collapse
|
8
|
Eslami M, Schneider P. Function, occurrence and inhibition of different forms of BAFF. Curr Opin Immunol 2021; 71:75-80. [PMID: 34182216 DOI: 10.1016/j.coi.2021.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/26/2021] [Accepted: 06/06/2021] [Indexed: 01/27/2023]
Abstract
B cell activating factor (BAFF or BLyS), an important cytokine for B cell survival and humoral immune responses, is targeted in the clinic for the treatment of systemic lupus erythematosus. This review focuses on the structure, function and inhibition profiles of membrane-bound BAFF, soluble BAFF 3-mer and soluble BAFF 60-mer, all of which have distinct properties. BAFF contains a loop region not required for receptor binding but essential for receptor activation via promotion of BAFF-to-BAFF contacts. This loop region additionally allows formation of BAFF 60-mer, in which epitopes of the BAFF inhibitor belimumab are inaccessible. If 60-mer forms in humans, it is predicted to be short-lived and to act locally because adult serum contains a BAFF 60-mer dissociating activity. Cord blood contains elevated levels of BAFF, part of which displays attributes of 60-mer, suggesting a role for this form of BAFF in the development of foetal or neonate B cells.
Collapse
Affiliation(s)
- Mahya Eslami
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|