1
|
Potticary AL, Belk MC, Creighton JC, Ito M, Kilner R, Komdeur J, Royle NJ, Rubenstein DR, Schrader M, Shen S, Sikes DS, Smiseth PT, Smith R, Steiger S, Trumbo ST, Moore AJ. Revisiting the ecology and evolution of burying beetle behavior (Staphylinidae: Silphinae). Ecol Evol 2024; 14:e70175. [PMID: 39170054 PMCID: PMC11336061 DOI: 10.1002/ece3.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Investigating fundamental processes in biology requires the ability to ground broad questions in species-specific natural history. This is particularly true in the study of behavior because an organism's experience of the environment will influence the expression of behavior and the opportunity for selection. Here, we provide a review of the natural history and behavior of burying beetles of the genus Nicrophorus to provide the groundwork for comparative work that showcases their remarkable behavioral and ecological diversity. Burying beetles have long fascinated scientists because of their well-developed parenting behavior, exhibiting extended post-hatching care of offspring that varies extensively within and across taxa. Despite the burgeoning success of burying beetles as a model system for the study of behavioral evolution, there has not been a review of their behavior, ecology, and evolution in over 25 years. To address this gap, we leverage a developing community of researchers who have contributed to a detailed knowledge of burying beetles to highlight the utility of Nicrophorus for investigating the causes and consequences of social and behavioral evolution.
Collapse
Affiliation(s)
- Ahva L. Potticary
- Department of BiologyNorthern Michigan UniversityMarquetteMichiganUSA
- Department of EntomologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Mark C. Belk
- Department of BiologyBrigham Young UniversityProvoUtahUSA
| | - J. Curtis Creighton
- Department of Biological SciencesPurdue University NorthwestHammondIndianaUSA
| | - Minobu Ito
- Department of Environmental ScienceToho UniversityFunabashiChibaJapan
| | | | - Jan Komdeur
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Nick J. Royle
- Centre for Ecology and Conservation, Faculty of Environment, Science & the EconomyUniversity of ExeterCornwallUK
| | - Dustin R. Rubenstein
- Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew York CityNew YorkUSA
| | - Matthew Schrader
- Department of BiologySewanee, The University of the SouthSewaneeTennesseeUSA
| | | | - Derek S. Sikes
- University of Alaska Museum and Department of Biology and WildlifeUniversity of Alaska FairbanksFairbanksAlaskaUSA
| | - Per T. Smiseth
- Institute of Ecology and EvolutionThe University of EdinburghEdinburghUK
| | - Rosemary Smith
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
- Rocky Mountain Biological LaboratoryCrested ButteColoradoUSA
| | - Sandra Steiger
- Department of Evolutionary Animal EcologyUniversity of BayreuthBayreuthGermany
| | - Stephen T. Trumbo
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutWaterburyConnecticutUSA
| | - Allen J. Moore
- Department of EntomologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
2
|
Pyenson BC, Rehan SM. Gene regulation supporting sociality shared across lineages and variation in complexity. Genome 2024; 67:99-108. [PMID: 38096504 DOI: 10.1139/gen-2023-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Across evolutionary lineages, insects vary in social complexity, from those that exhibit extended parental care to those with elaborate divisions of labor. Here, we synthesize the sociogenomic resources from hundreds of species to describe common gene regulatory mechanisms in insects that regulate social organization across phylogeny and levels of social complexity. Different social phenotypes expressed by insects can be linked to the organization of co-expressing gene networks and features of the epigenetic landscape. Insect sociality also stems from processes like the emergence of parental care and the decoupling of ancestral genetic programs. One underexplored avenue is how variation in a group's social environment affects the gene expression of individuals. Additionally, an experimental reduction of gene expression would demonstrate how the activity of specific genes contributes to insect social phenotypes. While tissue specificity provides greater localization of the gene expression underlying social complexity, emerging transcriptomic analysis of insect brains at the cellular level provides even greater resolution to understand the molecular basis of social insect evolution.
Collapse
Affiliation(s)
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
3
|
Merleau LA, Larrigaldie I, Bousquet O, Devers S, Keller M, Lécureuil C, Meunier J. Exposure to pyriproxyfen (juvenile hormone agonist) does not alter maternal care and reproduction in the European earwig. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72729-72746. [PMID: 35610459 DOI: 10.1007/s11356-022-20970-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Sublethal exposure to pesticides can alter the survival and reproduction of a wide range of non-target organisms. However, it remains unclear whether this exposure can alter behaviours that are often essential for long-term population dynamics and maintenance, such as parental care. In this study, we tested the effect of pyriproxyfen exposure (an insect growth regulator) on maternal care in the European earwig, an insect that is both used in pest control in pip-fruit orchards and considered a pest in stone fruit orchards. We exposed 424 females at doses either 10 times lower, equivalent or 10 times higher than normal application rates in French orchards. As maternal care can change over the weeks of family life, we exposed the earwig mothers at five different days before and after egg hatching. We then measured the expression of ten forms of maternal care towards eggs and juveniles, six non-caring behaviours, eggs and juvenile development, metabolic reserves in mothers at egg hatching and females' production of a terminal clutch. First, our results revealed that the three tested doses of pyriproxyfen were non-lethal and confirmed that maternal care decreased throughout both pre- and post-hatching family life. However, we did not detect any effect of pyriproxyfen on maternal care and non-care behaviours, eggs and juvenile development, quantities of lipids, proteins and glycogen in mothers at egg hatching, and on the production of a future clutch. Overall, these findings suggest that the maximal doses of pyriproxyfen authorized in French orchards is likely to have limited effects on the short- and long-term maintenance of populations of the European earwig and raises fundamental questions about the nature of the link between juvenile hormone and parental care in insects.
Collapse
Affiliation(s)
- Leslie-Anne Merleau
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261, CNRS, University of Tours, Tours, France
| | - Izïa Larrigaldie
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261, CNRS, University of Tours, Tours, France
| | - Océane Bousquet
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261, CNRS, University of Tours, Tours, France
| | - Séverine Devers
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261, CNRS, University of Tours, Tours, France
| | - Matthieu Keller
- Laboratoire de Physiologie de la Reproduction & des Comportements, UMR 7247 INRAE/CNRS/Université de Tours/IFCE, Nouzilly, France
| | - Charlotte Lécureuil
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261, CNRS, University of Tours, Tours, France
| | - Joël Meunier
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261, CNRS, University of Tours, Tours, France.
| |
Collapse
|
4
|
Chen D, Han HL, Li WJ, Wang JJ, Wei D. Expression and Role of Vitellogenin Genes in Ovarian Development of Zeugodacus cucurbitae. INSECTS 2022; 13:insects13050452. [PMID: 35621787 PMCID: PMC9143374 DOI: 10.3390/insects13050452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023]
Abstract
Vitellogenin (Vg) genes encode the major egg yolk protein precursor in arthropods. In this study, four Vgs were identified in Zeugodacus cucurbitae (Coquillett). Sequence analysis showed that four ZcVgs had the conserved Vg domain. Phylogenetic analysis indicated that four ZcVgs were homologous to the Vgs of Tephritidae insects. The temporal and spatial expression patterns of ZcVgs were analyzed by quantitative real-time polymerase chain reaction (RT-qPCR), and the four ZcVgs showed high expression levels in female adults, especially in the fat body. The expression of ZcVg1 and ZcVg3 was down-regulated by a low dosage (0.5 μg) of 20-hydroxyecdysone (20E), and ZcVg2, ZcVg3, and ZcVg4 were up-regulated by a high dosage (1.0 and 2.0 μg) of 20E. The expression of ZcVg1 and ZcVg2 was up-regulated by 5 μg of juvenile hormone (JH), while all of the ZcVgs were down-regulated by a low and high dosage of JH. Expression of ZcVgs was down-regulated after 24 h of starvation and recovered to normal after nutritional supplementation. After micro-injection of the gene-specific double-stranded RNA, the ZcVgs’ expression was significantly suppressed, and ovarian development was delayed in Z. cucurbitae females. The results indicate that RNA interference of reproduction-related genes is a potential pest control method that works by manipulating female fertility.
Collapse
Affiliation(s)
- Dong Chen
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (D.C.); (H.-L.H.); (W.-J.L.); (J.-J.W.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hong-Liang Han
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (D.C.); (H.-L.H.); (W.-J.L.); (J.-J.W.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Wei-Jun Li
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (D.C.); (H.-L.H.); (W.-J.L.); (J.-J.W.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (D.C.); (H.-L.H.); (W.-J.L.); (J.-J.W.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Dong Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (D.C.); (H.-L.H.); (W.-J.L.); (J.-J.W.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel.: +86-23-6825-0653
| |
Collapse
|
5
|
Abbot P. Defense in Social Insects: Diversity, Division of Labor, and Evolution. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:407-436. [PMID: 34995089 DOI: 10.1146/annurev-ento-082521-072638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
All social insects defend their colony from predators, parasites, and pathogens. In Oster and Wilson's classic work, they posed one of the key paradoxes about defense in social insects: Given the universal necessity of defense, why then is there so much diversity in mechanisms? Ecological factors undoubtedly are important: Predation and usurpation have imposed strong selection on eusocial insects, and active defense by colonies is a ubiquitous feature of all social insects. The description of diverse insect groups with castes of sterile workers whose main duty is defense has broadened the purview of social evolution in insects, in particular with respect to caste and behavior. Defense is one of the central axes along which we can begin to organize and understand sociality in insects. With the establishment of social insect models such as the honey bee, new discoveries are emerging regarding the endocrine, neural, and gene regulatory mechanisms underlying defense in social insects. The mechanisms underlying morphological and behavioral defense traits may be shared across diverse groups, providing opportunities for identifying both conserved and novel mechanisms at work. Emerging themes highlight the context dependency of and interaction between factors that regulate defense in social insects.
Collapse
Affiliation(s)
- Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA;
| |
Collapse
|
6
|
Sasaki K, Okada Y, Shimoji H, Aonuma H, Miura T, Tsuji K. Social Evolution With Decoupling of Multiple Roles of Biogenic Amines Into Different Phenotypes in Hymenoptera. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.659160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Convergent evolution of eusociality with the division of reproduction and its plastic transition in Hymenoptera has long attracted the attention of researchers. To explain the evolutionary scenario of the reproductive division of labor, several hypotheses had been proposed. Among these, we focus on the most basic concepts, i.e., the ovarian ground plan hypothesis (OGPH) and the split-function hypothesis (SFH). The OGPH assumes the physiological decoupling of ovarian cycles and behavior into reproductive and non-reproductive individuals, whereas the SFH assumes that the ancestral reproductive function of juvenile hormone (JH) became split into a dual function. Here, we review recent progress in the understanding of the neurohormonal regulation of reproduction and social behavior in eusocial hymenopterans, with an emphasis on biogenic amines. Biogenic amines are key substances involved in the switching of reproductive physiology and modulation of social behaviors. Dopamine has a pivotal role in the formation of reproductive skew irrespective of the social system, whereas octopamine and serotonin contribute largely to non-reproductive social behaviors. These decoupling roles of biogenic amines are seen in the life cycle of a single female in a solitary species, supporting OGPH. JH promotes reproduction with dopamine function in primitively eusocial species, whereas it regulates non-reproductive social behaviors with octopamine function in advanced eusocial species. The signal transduction networks between JH and the biogenic amines have been rewired in advanced eusocial species, which could regulate reproduction in response to various social stimuli independently of JH action.
Collapse
|
7
|
Nagy NA, Rácz R, Rimington O, Póliska S, Orozco-terWengel P, Bruford MW, Barta Z. Draft genome of a biparental beetle species, Lethrus apterus. BMC Genomics 2021; 22:301. [PMID: 33902445 PMCID: PMC8074431 DOI: 10.1186/s12864-021-07627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/13/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The lack of an understanding about the genomic architecture underpinning parental behaviour in subsocial insects displaying simple parental behaviours prevents the development of a full understanding about the evolutionary origin of sociality. Lethrus apterus is one of the few insect species that has biparental care. Division of labour can be observed between parents during the reproductive period in order to provide food and protection for their offspring. RESULTS Here, we report the draft genome of L. apterus, the first genome in the family Geotrupidae. The final assembly consisted of 286.93 Mbp in 66,933 scaffolds. Completeness analysis found the assembly contained 93.5% of the Endopterygota core BUSCO gene set. Ab initio gene prediction resulted in 25,385 coding genes, whereas homology-based analyses predicted 22,551 protein coding genes. After merging, 20,734 were found during functional annotation. Compared to other publicly available beetle genomes, 23,528 genes among the predicted genes were assigned to orthogroups of which 1664 were in species-specific groups. Additionally, reproduction related genes were found among the predicted genes based on which a reduction in the number of odorant- and pheromone-binding proteins was detected. CONCLUSIONS These genes can be used in further comparative and functional genomic researches which can advance our understanding of the genetic basis and hence the evolution of parental behaviour.
Collapse
Affiliation(s)
- Nikoletta A Nagy
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary.
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary.
| | - Rita Rácz
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | | | - Szilárd Póliska
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | | | - Zoltán Barta
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
8
|
Friedman DA, Johnson BR, Linksvayer TA. Distributed physiology and the molecular basis of social life in eusocial insects. Horm Behav 2020; 122:104757. [PMID: 32305342 DOI: 10.1016/j.yhbeh.2020.104757] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/24/2022]
Abstract
The traditional focus of physiological and functional genomic research is on molecular processes that play out within a single multicellular organism. In the colonial (eusocial) insects such as ants, bees, and termites, molecular and behavioral responses of interacting nestmates are tightly linked, and key physiological processes are regulated at the scale of the colony. Such colony-level physiological processes regulate nestmate physiology in a distributed fashion, through various social communication mechanisms. As a result of physiological decentralization over evolutionary time, organismal mechanisms, for example related to pheromone detection, hormone signaling, and neural signaling pathways, are deployed in novel contexts to influence nestmate and colony traits. Here we explore how functional genomic, physiological, and behavioral studies can benefit from considering the traits of eusocial insects in this light. We highlight functional genomic work exploring how nestmate-level and colony-level traits arise and are influenced by interactions among physiologically-specialized nestmates of various developmental stages. We also consider similarities and differences between nestmate-level (organismal) and colony-level (superorganismal) physiological processes, and make specific hypotheses regarding the physiology of eusocial taxa. Integrating theoretical models of distributed systems with empirical functional genomics approaches will be useful in addressing fundamental questions related to the evolution of eusociality and collective behavior in natural systems.
Collapse
Affiliation(s)
- D A Friedman
- University of California, Davis, Department of Entomology, Davis, CA 95616, United States of America.
| | - B R Johnson
- University of California, Davis, Department of Entomology, Davis, CA 95616, United States of America
| | - T A Linksvayer
- University of Pennsylvania, Department of Biology, Pennsylvania, PA 19104, United States of America
| |
Collapse
|
9
|
Chanchay P, Vongsangnak W, Thancharoen A, Sriboonlert A. Reconstruction of insect hormone pathways in an aquatic firefly, Sclerotia aquatilis (Coleoptera: Lampyridae), using RNA-seq. PeerJ 2019; 7:e7428. [PMID: 31396456 PMCID: PMC6681800 DOI: 10.7717/peerj.7428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/07/2019] [Indexed: 01/19/2023] Open
Abstract
Insect hormones: ecdysteroids and juvenile hormones have crucial functions during the regulation of different developmental pathways in insects. Insect metamorphosis is one of the primary pathways regulated by these hormones. The insect hormone biosynthetic pathway is conserved among arthropods, including insects, with some variations in the form of hormones used among each group of insects. In this study, the candidate genes involved in the insect hormone pathways and their functional roles were assessed in an aquatic firefly, Sclerotia aquatilis using a high-throughput RNA sequencing technique. Illumina next-generation sequencing (NGS) was used to generate transcriptome data for the different developmental stages (i.e., larva, pupa, and adult) of S. aquatilis. A total of 82,022 unigenes were generated across all different developmental stages. Functional annotation was performed for each gene, based on multiple biological databases, generating 46,230 unigenes. These unigenes were subsequently mapped using KEGG pathways. Accordingly, 221 protein-encoding genes involved in the insect hormone pathways were identified, including, JHAMT, CYP15A1, JHE, and Halloween family genes. Twenty potential gene candidates associated with the biosynthetic and degradation pathways for insect hormones were subjected to real-time PCR, reverse transcriptase PCR (RT-PCR) and sequencing analyses. The real-time PCR results showed similar expression patterns as those observed for transcriptome expression profiles for most of the examined genes. RT-PCR and Sanger sequencing confirmed the expressed coding sequences of these gene candidates. This study is the first to examine firefly insect hormone pathways, facilitating a better understanding of firefly growth and development.
Collapse
Affiliation(s)
- Pornchanan Chanchay
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food, and Health, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Anchana Thancharoen
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | | |
Collapse
|
10
|
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| | | | - Geoffrey M Attardo
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|