1
|
Kocher S, Kingwell C. The Molecular Substrates of Insect Eusociality. Annu Rev Genet 2024; 58:273-295. [PMID: 39146360 PMCID: PMC11588544 DOI: 10.1146/annurev-genet-111523-102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The evolution of eusociality in Hymenoptera-encompassing bees, ants, and wasps-is characterized by multiple gains and losses of social living, making this group a prime model to understand the mechanisms that underlie social behavior and social complexity. Our review synthesizes insights into the evolutionary history and molecular basis of eusociality. We examine new evidence for key evolutionary hypotheses and molecular pathways that regulate social behaviors, highlighting convergent evolution on a shared molecular toolkit that includes the insulin/insulin-like growth factor signaling (IIS) and target of rapamycin (TOR) pathways, juvenile hormone and ecdysteroid signaling, and epigenetic regulation. We emphasize how the crosstalk among these nutrient-sensing and endocrine signaling pathways enables social insects to integrate external environmental stimuli, including social cues, with internal physiology and behavior. We argue that examining these pathways as an integrated regulatory circuit and exploring how the regulatory architecture of this circuit evolves alongside eusociality can open the door to understanding the origin of the complex life histories and behaviors of this group.
Collapse
Affiliation(s)
- Sarah Kocher
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Biology, and Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey, USA;
| | - Callum Kingwell
- Smithsonian Tropical Research Institute, Ancon, Panama
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Biology, and Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey, USA;
| |
Collapse
|
2
|
Bourke AFG. Conflict and conflict resolution in the major transitions. Proc Biol Sci 2023; 290:20231420. [PMID: 37817595 PMCID: PMC10565403 DOI: 10.1098/rspb.2023.1420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
Conflict and conflict resolution have been argued to be fundamental to the major transitions in evolution. These were key events in life's history in which previously independently living individuals cooperatively formed a higher-level individual, such as a multicellular organism or eusocial colony. Conflict has its central role because, to proceed stably, the evolution of individuality in each major transition required within-individual conflict to be held in check. This review revisits the role of conflict and conflict resolution in the major transitions, addressing recent work arguing for a minor role. Inclusive fitness logic suggests that differences between the kin structures of clones and sexual families support the absence of conflict at the origin of multicellularity but, by contrast, suggest that key conflicts existed at the origin of eusociality. A principal example is conflict over replacing the founding queen (queen replacement). Following the origin of each transition, conflict remained important, because within-individual conflict potentially disrupts the attainment of maximal individuality (organismality) in the system. The conclusion is that conflict remains central to understanding the major transitions, essentially because conflict arises from differences in inclusive fitness optima while conflict resolution can help the system attain a high degree of coincidence of inclusive fitness interests.
Collapse
Affiliation(s)
- Andrew F. G. Bourke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
3
|
Cameron-Pack ME, König SG, Reyes-Guevara A, Reyes-Prieto A, Nedelcu AM. A personal cost of cheating can stabilize reproductive altruism during the early evolution of clonal multicellularity. Biol Lett 2022; 18:20220059. [PMID: 35728616 PMCID: PMC9213111 DOI: 10.1098/rsbl.2022.0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/31/2022] [Indexed: 01/10/2023] Open
Abstract
Understanding how cooperation evolved and is maintained remains an important and often controversial topic because cheaters that reap the benefits of cooperation without paying the costs can threaten the evolutionary stability of cooperative traits. Cooperation-and especially reproductive altruism-is particularly relevant to the evolution of multicellularity, as somatic cells give up their reproductive potential in order to contribute to the fitness of the newly emerged multicellular individual. Here, we investigated cheating in a simple multicellular species-the green alga Volvox carteri, in the context of the mechanisms that can stabilize reproductive altruism during the early evolution of clonal multicellularity. We found that the benefits cheater mutants can gain in terms of their own reproduction are pre-empted by a cost in survival due to increased sensitivity to stress. This personal cost of cheating reflects the antagonistic pleiotropic effects that the gene coding for reproductive altruism-regA-has at the cell level. Specifically, the expression of regA in somatic cells results in the suppression of their reproduction potential but also confers them with increased resistance to stress. Since regA evolved from a life-history trade-off gene, we suggest that co-opting trade-off genes into cooperative traits can provide a built-in safety system against cheaters in other clonal multicellular lineages.
Collapse
Affiliation(s)
- Marybelle E. Cameron-Pack
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick E3B 5A3, Canada
| | - Stephan G. König
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick E3B 5A3, Canada
| | - Anajose Reyes-Guevara
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick E3B 5A3, Canada
| | - Adrian Reyes-Prieto
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick E3B 5A3, Canada
| | - Aurora M. Nedelcu
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
4
|
Silva JD. The Extension of Foundress Lifespan and the Evolution of Eusociality in the Hymenoptera. Am Nat 2021; 199:E140-E155. [DOI: 10.1086/718594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Abstract
Although indirect selection through relatives (kin selection) can explain the evolution of effectively sterile offspring that act as helpers at the nest (eusociality) in the ants, bees, and stinging wasps (aculeate Hymenoptera), the genetic, ecological, and life history conditions that favor transitions to eusociality are poorly understood. In this study, ancestral state reconstruction on recently published phylogenies was used to identify the independent transitions to eusociality in each of the taxonomic families that exhibit eusociality. Semisociality, in which a single nest co-foundress monopolizes reproduction, often precedes eusociality outside the vespid wasps. Such a route to eusociality, which is consistent with groups consisting of a mother and her daughters (subsocial) at some stage and ancestral monogamy, is favored by the haplodiploid genetic sex determination of the Hymenoptera (diploid females and haploid males) and thus may explain why eusociality is common in the Hymenoptera. Ancestral states were also reconstructed for life history characters that have been implicated in the origins of eusociality. A loss of larval diapause during unfavorable seasons or conditions precedes, or coincides with, all but one transition to eusociality. This pattern is confirmed using phylogenetic tests of associations between state transition rates for sweat bees and apid bees. A loss of larval diapause may simply reflect the subsocial route to eusociality since subsociality is defined as females interacting with their adult daughters. A loss of larval diapause and a gain of subsociality may be associated with an extended breeding season that permits the production of at least two broods, which is necessary for helpers to evolve. Adult diapause may also lower the selective barrier to a first-brood daughter becoming a helper. Obligate eusociality meets the definition of a major evolutionary transition, and such transitions have occurred five times in the Hymenoptera.
Collapse
|
6
|
Robin AN, Denton KK, Horna Lowell ES, Dulay T, Ebrahimi S, Johnson GC, Mai D, O’Fallon S, Philson CS, Speck HP, Zhang XP, Nonacs P. Major Evolutionary Transitions and the Roles of Facilitation and Information in Ecosystem Transformations. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.711556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A small number of extraordinary “Major Evolutionary Transitions” (METs) have attracted attention among biologists. They comprise novel forms of individuality and information, and are defined in relation to organismal complexity, irrespective of broader ecosystem-level effects. This divorce between evolutionary and ecological consequences qualifies unicellular eukaryotes, for example, as a MET although they alone failed to significantly alter ecosystems. Additionally, this definition excludes revolutionary innovations not fitting into either MET type (e.g., photosynthesis). We recombine evolution with ecology to explore how and why entire ecosystems were newly created or radically altered – as Major System Transitions (MSTs). In doing so, we highlight important morphological adaptations that spread through populations because of their immediate, direct-fitness advantages for individuals. These are Major Competitive Transitions, or MCTs. We argue that often multiple METs and MCTs must be present to produce MSTs. For example, sexually-reproducing, multicellular eukaryotes (METs) with anisogamy and exoskeletons (MCTs) significantly altered ecosystems during the Cambrian. Therefore, we introduce the concepts of Facilitating Evolutionary Transitions (FETs) and Catalysts as key events or agents that are insufficient themselves to set a MST into motion, but are essential parts of synergies that do. We further elucidate the role of information in MSTs as transitions across five levels: (I) Encoded; (II) Epigenomic; (III) Learned; (IV) Inscribed; and (V) Dark Information. The latter is ‘authored’ by abiotic entities rather than biological organisms. Level IV has arguably allowed humans to produce a MST, and V perhaps makes us a FET for a future transition that melds biotic and abiotic life into one entity. Understanding the interactive processes involved in past major transitions will illuminate both current events and the surprising possibilities that abiotically-created information may produce.
Collapse
|
7
|
Schmid-Hempel P. Sociality and parasite transmission. Behav Ecol Sociobiol 2021; 75:156. [PMID: 34720348 PMCID: PMC8540878 DOI: 10.1007/s00265-021-03092-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022]
Abstract
Parasites and their social hosts form many different relationships. But what kind of selection regimes are important? A look at the parameters that determine fitness of the two parties suggests that social hosts differ from solitary ones primarily in the structure of transmission pathways. Because transmission is, both, the physical encounter of a new host and infecting it, several different elements determine parasite transmission success. These include spatial distance, genetic distance, or the temporal and ecological niche overlaps. Combing these elements into a ‘generalized transmission distance’ that determines parasite fitness aids in the identification of the critical steps. For example, short-distance transmission to genetically similar hosts within the social group is the most frequent process under sociality. Therefore, spatio-genetical distances are the main driver of parasite fitness. Vice versa, the generalized distance identifies the critical host defences. In this case, host defences should be primarily selected to defend against the within-group spread of an infection, especially among closely related group members.
Collapse
Affiliation(s)
- Paul Schmid-Hempel
- Institute of Integrative Biology (IBZ), ETH Zürich, ETH-Zentrum CHN, Universitätstrasse 16, CH-8092 Zürich, Switzerland
| |
Collapse
|
8
|
Bernadou A, Kramer BH, Korb J. Major Evolutionary Transitions in Social Insects, the Importance of Worker Sterility and Life History Trade-Offs. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.732907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The evolution of eusociality in social insects, such as termites, ants, and some bees and wasps, has been regarded as a major evolutionary transition (MET). Yet, there is some debate whether all species qualify. Here, we argue that worker sterility is a decisive criterion to determine whether species have passed a MET (= superorganisms), or not. When workers are sterile, reproductive interests align among group members as individual fitness is transferred to the colony level. Division of labour among cooperating units is a major driver that favours the evolution of METs across all biological scales. Many METs are characterised by a differentiation into reproductive versus maintenance functions. In social insects, the queen specialises on reproduction while workers take over maintenance functions such as food provisioning. Such division of labour allows specialisation and it reshapes life history trade-offs among cooperating units. For instance, individuals within colonies of social insects can overcome the omnipresent fecundity/longevity trade-off, which limits reproductive success in organisms, when increased fecundity shortens lifespan. Social insect queens (particularly in superorganismal species) can reach adult lifespans of several decades and are among the most fecund terrestrial animals. The resulting enormous reproductive output may contribute to explain why some genera of social insects became so successful. Indeed, superorganismal ant lineages have more species than those that have not passed a MET. We conclude that the release from life history constraints at the individual level is a important, yet understudied, factor across METs to explain their evolutionary success.
Collapse
|
9
|
Pull CD, McMahon DP. Superorganism Immunity: A Major Transition in Immune System Evolution. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|