1
|
Naktang C, Khanbo S, Yundaeng C, U-thoomporn S, Kongkachana W, Jiumjamrassil D, Maknual C, Wanthongchai P, Tangphatsornruang S, Pootakham W. Assessment of the Genetic Diversity and Population Structure of Rhizophora mucronata along Coastal Areas in Thailand. BIOLOGY 2023; 12:484. [PMID: 36979175 PMCID: PMC10044974 DOI: 10.3390/biology12030484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023]
Abstract
Unique and biodiverse, mangrove ecosystems provide humans with benefits and contribute to coastal protection. Rhizophora mucronata, a member of the Rhizophoraceae family, is prevalent in the mangrove forests of Thailand. R. mucronata's population structure and genetic diversity have received scant attention. Here, we sequenced the entire genome of R. mucronata using 10× Genomics technology and obtained an assembly size of 219 Mb with the N50 length of 542,540 bases. Using 2857 single nucleotide polymorphism (SNP) markers, this study investigated the genetic diversity and population structure of 80 R. mucronata accessions obtained from the mangrove forests in Thailand. The genetic diversity of R. mucronata was moderate (I = 0.573, Ho = 0.619, He = 0.391). Two subpopulations were observed and confirmed from both population structure and principal component analysis (PCA). Analysis of molecular variance (AMOVA) showed that there was more variation within populations than between them. Mean pairwise genetic differentiation (FST = 0.09) showed that there was not much genetic difference between populations. Intriguingly, the predominant clustering pattern in the R. mucronata population did not correspond to the Gulf of Thailand and the Andaman Sea, which are separated by the Malay Peninsula. Several factors could have influenced the R. mucronata genetic pattern, such as hybridization and anthropogenic factors. This research will provide important information for the future conservation and management of R. mucronata in Thailand.
Collapse
Affiliation(s)
- Chaiwat Naktang
- National Omics Center, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
| | - Supaporn Khanbo
- National Omics Center, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
| | - Chutintorn Yundaeng
- National Omics Center, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sonicha U-thoomporn
- National Omics Center, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wasitthee Kongkachana
- National Omics Center, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
| | - Darunee Jiumjamrassil
- Department of Marine and Coastal Resources, 120 The Government Complex, Chaengwatthana Rd., Thung Song Hong, Bangkok 10210, Thailand
| | - Chatree Maknual
- Department of Marine and Coastal Resources, 120 The Government Complex, Chaengwatthana Rd., Thung Song Hong, Bangkok 10210, Thailand
| | - Poonsri Wanthongchai
- Department of Marine and Coastal Resources, 120 The Government Complex, Chaengwatthana Rd., Thung Song Hong, Bangkok 10210, Thailand
| | - Sithichoke Tangphatsornruang
- National Omics Center, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wirulda Pootakham
- National Omics Center, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
2
|
Nizam A, Meera SP, Kumar A. Genetic and molecular mechanisms underlying mangrove adaptations to intertidal environments. iScience 2022; 25:103547. [PMID: 34988398 PMCID: PMC8693430 DOI: 10.1016/j.isci.2021.103547] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mangroves are halophytic plants belonging to diverse angiosperm families that are adapted to highly stressful intertidal zones between land and sea. They are special, unique, and one of the most productive ecosystems that play enormous ecological roles and provide a large number of benefits to the coastal communities. To thrive under highly stressful conditions, mangroves have innovated several key morphological, anatomical, and physio-biochemical adaptations. The evolution of the unique adaptive modifications might have resulted from a host of genetic and molecular changes and to date we know little about the nature of these genetic and molecular changes. Although slow, new information has accumulated over the last few decades on the genetic and molecular regulation of the mangrove adaptations, a comprehensive review on it is not yet available. This review provides up-to-date consolidated information on the genetic, epigenetic, and molecular regulation of mangrove adaptive traits.
Collapse
Affiliation(s)
- Ashifa Nizam
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| | - Suraj Prasannakumari Meera
- Department of Biotechnology and Microbiology, Dr. Janaki Ammal Campus, Kannur University, Palayad, Kerala 670661, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| |
Collapse
|