1
|
Baa-Puyoulet P, Gerlin L, Parisot N, Peignier S, Renoz F, Calevro F, Charles H. ArtSymbioCyc, a metabolic network database collection dedicated to arthropod symbioses: a case study, the tripartite cooperation in Sipha maydis. mSystems 2025; 10:e0014025. [PMID: 40116496 PMCID: PMC12013274 DOI: 10.1128/msystems.00140-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/20/2025] [Indexed: 03/23/2025] Open
Abstract
Most arthropods live in close association with bacteria. The genomes of associated partners have co-evolved, creating situations of interdependence that are complex to decipher despite the availability of their complete sequences. We developed ArtSymbioCyc, a metabolism-oriented database collection gathering genomic resources for arthropods and their associated bacteria. ArtSymbioCyc uses the powerful tools of the BioCyc community to produce high-quality annotations and to analyze and compare metabolic networks on a genome-wide scale. We used ArtSymbioCyc to study the case of the tripartite symbiosis of the cereal aphid Sipha maydis focusing on amino acid and vitamin metabolisms, as these compounds are known to be important in this strictly phloemophagous insect. We showed that the metabolic pathways of the insect host and its two obligate bacterial associates are interdependent and specialized in the exploitation of Poaceae phloem, particularly for the biosynthesis of sulfur-containing amino acids and most vitamins. This demonstrates that ArtSymbioCyc does not only reveal the individual metabolic capacities of each partner and their respective contributions to the holobiont they constitute but also allows to predict the essential inputs that must come from host nutrition.IMPORTANCEThe evolution has driven the emergence of complex arthropod-microbe symbiotic systems, whose metabolic integration is difficult to unravel. With its user-friendly interface, ArtSymbioCyc (https://artsymbiocyc.cycadsys.org) eases and speeds up the analysis of metabolic networks by enabling precise inference of compound exchanges between associated partners and helps unveil the adaptive potential of arthropods in contexts such as conservation or agricultural control.
Collapse
Affiliation(s)
| | - Léo Gerlin
- INRAE, INSA Lyon, BF2I, UMR203, Villeurbanne, France
| | | | | | - François Renoz
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
2
|
Torres J, Rozo-Lopez P, Brewer W, Saleh Ziabari O, Parker BJ. Draft genome sequence of the glasshouse-potato aphid Aulacorthum solani. G3 (BETHESDA, MD.) 2025; 15:jkaf013. [PMID: 39849931 PMCID: PMC11917484 DOI: 10.1093/g3journal/jkaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Aulacorthum solani is a worldwide agricultural pest aphid capable of feeding on a wide range of host plants. This insect is a vector of plant viruses and causes injury to crops including stunted growth from the loss of phloem. We found that the publicly available genome for A. solani is contaminated with another aphid species, and we produced a new genome using a barcoded isogenic laboratory line. We generated Oxford Nanopore and Illumina reads to assemble a draft genome, and we sequenced RNA to aid in the annotation of our assembly. Our A. solani genome is 671 Mb containing 7,020 contigs with an N50 length of 196 kb with a BUSCO completeness of 98.6%. Out of the 24,981 genes predicted by EGAPx, 22,804 were annotated with putative functions based on homology to other aphid species. This genome will provide a useful resource for the community of researchers studying aphids from agricultural and genomic perspectives.
Collapse
Affiliation(s)
- Joseph Torres
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN 37916, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Paula Rozo-Lopez
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN 37916, USA
| | - William Brewer
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN 37916, USA
| | - Omid Saleh Ziabari
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Benjamin J Parker
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN 37916, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| |
Collapse
|
3
|
Huang C, Ji B, Shi Z, Wang J, Yuan J, Yang P, Xu X, Jing H, Xu L, Fu J, Zhao L, Ren Y, Guo K, Li G. A comparative genomic analysis at the chromosomal-level reveals evolutionary patterns of aphid chromosomes. Commun Biol 2025; 8:427. [PMID: 40082663 PMCID: PMC11906883 DOI: 10.1038/s42003-025-07851-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Genomic rearrangements are primary drivers of evolution, promoting biodiversity. Aphids, an agricultural pest with high species diversity, exhibit rapid chromosomal evolution and diverse karyotypes. These variations have been attributed to their unique holocentric chromosomes and parthenogenesis, though this hypothesis has faced scrutiny. In this study, we generated a chromosomal-level reference genome assembly of the celery aphid (Semiaphis heraclei) and conducted comparative genomic analysis, revealing varying chromosomal evolution rates among aphid lineages, positively correlating with species diversity. Aphid X chromosomes have undergone frequent intra-chromosomal recombination, while autosomes show accelerated inter-chromosomal recombination. Moreover, considering both inter- and intra-chromosomal rearrangements, the increased autosomal rearrangement rates may be common across the Aphidomorpha. We identified that the expansion of DNA transposable elements and short interspersed nuclear elements (SINEs), coupled with gene loss and duplication associated with karyotypic instability (such as RIF1, BRD8, DMC1, and TERT), may play crucial roles in aphid chromosomal evolution. Additionally, our analysis revealed that the mutation and expansion of detoxification gene families in S. heraclei may be a key factor in adapting to host plant chemical defenses. Our results provide new insights into chromosomal evolutionary patterns and detoxification gene families evolution in aphids, aiding the understanding of species diversity and adaptive evolution.
Collapse
Affiliation(s)
- Chen Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Bingru Ji
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Zhaohui Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiangyue Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiaqing Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Peng Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Haohao Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lulu Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Jing Fu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Le Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, 723000, P.R. China
| | - Yandong Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Kun Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
4
|
Thorpe P, Altmann S, Lopez-Cobollo R, Douglas N, Iqbal J, Kanvil S, Simon JC, Carolan JC, Bos J, Turnbull C. Multi-omics approaches define novel aphid effector candidates associated with virulence and avirulence phenotypes. BMC Genomics 2024; 25:1065. [PMID: 39528973 PMCID: PMC11552303 DOI: 10.1186/s12864-024-10984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Compatibility between plant parasites and their hosts is genetically determined {Citation}both interacting organisms. For example, plants may carry resistance (R) genes or deploy chemical defences. Aphid saliva contains many proteins that are secreted into host tissues. Subsets of these proteins are predicted to act as effectors, either subverting or triggering host immunity. However, associating particular effectors with virulence or avirulence outcomes presents challenges due to the combinatorial complexity. Here we use defined aphid and host genetics to test for co-segregation of expressed aphid transcripts and proteins with virulent or avirulent phenotypes. RESULTS We compared virulent and avirulent pea aphid parental genotypes, and their bulk segregant F1 progeny on Medicago truncatula genotypes carrying or lacking the RAP1 (Resistance to Acyrthosiphon pisum 1) resistance quantitative trait locus. Differential gene expression analysis of whole body and head samples, in combination with proteomics of saliva and salivary glands, enabled us to pinpoint proteins associated with virulence or avirulence phenotypes. There was relatively little impact of host genotype, whereas large numbers of transcripts and proteins were differentially expressed between parental aphids, likely a reflection of their classification as divergent biotypes within the pea aphid species complex. Many fewer transcripts intersected with the equivalent differential expression patterns in the bulked F1 progeny, providing an effective filter for removing genomic background effects. Overall, there were more upregulated genes detected in the F1 avirulent dataset compared with the virulent one. Some genes were differentially expressed both in the transcriptome and in the proteome datasets, with aminopeptidase N proteins being the most frequent differentially expressed family. In addition, a substantial proportion (27%) of salivary proteins lack annotations, suggesting that many novel functions remain to be discovered. CONCLUSIONS Especially when combined with tightly controlled genetics of both insect and host plant, multi-omics approaches are powerful tools for revealing and filtering candidate lists down to plausible genes for further functional analysis as putative aphid effectors.
Collapse
Affiliation(s)
- Peter Thorpe
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD5 4EH, UK
| | - Simone Altmann
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD5 4EH, UK
| | - Rosa Lopez-Cobollo
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Nadine Douglas
- Sustainable Ecosystems Group, Department of Biology, Maynooth University, Co Kildare, Maynooth, Republic of Ireland
- School of Biology and Environmental Science, University College Dublin, Dublin 2, Republic of Ireland
| | - Javaid Iqbal
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Sadia Kanvil
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Jean-Christophe Simon
- Institut de Génétique Environnement et Protection des Plantes (IGEPP), INRAE, 35653, Le Rheu, France
| | - James C Carolan
- Sustainable Ecosystems Group, Department of Biology, Maynooth University, Co Kildare, Maynooth, Republic of Ireland
| | - Jorunn Bos
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD5 4EH, UK.
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | - Colin Turnbull
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
5
|
Lu C, Zou T, Liu Q, Huang X. Twenty-nine newly sequenced genomes and a comprehensive genome dataset for the insect endosymbiont Buchnera. Sci Data 2024; 11:673. [PMID: 38909040 PMCID: PMC11193766 DOI: 10.1038/s41597-024-03537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Most phloem-feeding insects face nutritional deficiency and rely on their intracellular symbionts to provide nutrients, and most of endosymbiont genomes have undergone reduction. However, the study of genome reduction processes of endosymbionts has been constrained by the limited availability of genome data from different insect lineages. The obligate relationship between aphids and Buchnera aphidicola (hereafter Buchnera) makes them a classic model for studying insect-endosymbiont interaction. Here, we report 29 newly sequenced Buchnera genomes from 11 aphid subfamilies, and a comprehensive dataset based on 90 Buchnera genomes from 14 aphid subfamilies. The dataset shows a significant genomic difference of Buchnera among different aphid lineages. The dataset exhibits a more balanced distribution of Buchnera (from 14 aphid subfamilies) genome sizes, ranging from 400 kb to 600 kb, which can illustrate the genome reduction process of Buchnera. The new genome data provide valuable insights into the microevolutionary processes leading to genomic reduction of insect endosymbionts.
Collapse
Affiliation(s)
- Congcong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianmin Zou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qian Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
6
|
Turillazzi S, Meriggi N, Cavalieri D. Mutualistic Relationships between Microorganisms and Eusocial Wasps (Hymenoptera, Vespidae). Microorganisms 2023; 11:1340. [PMID: 37317314 DOI: 10.3390/microorganisms11051340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
Eusocial wasps are represented in the Vespidae by the subfamilies Stenogastrinae, Vespinae and Polistinae. These wasps present colonies that are sometimes composed of thousands of individuals which live in nests built with paper materials. The high density of the adult and larval population, as well as the stable micro environment of the nests, make very favourable conditions for the flourishing of various types of microorganisms. These microorganisms, which may be pathogens, are beneficial and certainly contribute to model the sociality of these insects. The mutualistic relationships that we observe in some species, especially in Actinomycete bacteria and yeasts, could have important fallouts for the development of new medicines and for the use of these insects in agricultural environments.
Collapse
Affiliation(s)
- Stefano Turillazzi
- Department of Biology, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
- Joint Laboratory LABREMMA, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
- Insect Pharma Entomotherapy s.r.l., Via M. del Piano 6, 50019 Firenze, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
- Joint Laboratory LABREMMA, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
- Joint Laboratory LABREMMA, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
| |
Collapse
|
7
|
Suenami S, Koto A, Miyazaki R. Basic Structures of Gut Bacterial Communities in Eusocial Insects. INSECTS 2023; 14:insects14050444. [PMID: 37233072 DOI: 10.3390/insects14050444] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
Gut bacterial communities assist host animals with numerous functions such as food digestion, nutritional provision, or immunity. Some social mammals and insects are unique in that their gut microbial communities are stable among individuals. In this review, we focus on the gut bacterial communities of eusocial insects, including bees, ants, and termites, to provide an overview of their community structures and to gain insights into any general aspects of their structural basis. Pseudomonadota and Bacillota are prevalent bacterial phyla commonly detected in those three insect groups, but their compositions are distinct at lower taxonomic levels. Eusocial insects harbor unique gut bacterial communities that are shared within host species, while their stability varies depending on host physiology and ecology. Species with narrow dietary habits, such as eusocial bees, harbor highly stable and intraspecific microbial communities, while generalists, such as most ant species, exhibit relatively diverse community structures. Caste differences could influence the relative abundance of community members without significantly altering the taxonomic composition.
Collapse
Affiliation(s)
- Shota Suenami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Akiko Koto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo 169-8555, Japan
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo 169-8555, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|