1
|
Sun S, Li S, Seim I, Du X, Yang X, Liu K, Wei Z, Shao C, Fan G, Liu X. Complete mitogenomes reveal high diversity and recent population dynamics in Antarctic krill. BMC Genomics 2025; 26:419. [PMID: 40301719 PMCID: PMC12039093 DOI: 10.1186/s12864-025-11579-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/07/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND The Antarctic krill (Euphausia superba) is a keystone species in the Southern Ocean ecosystem, influencing food web dynamics and ecosystem functionality. Despite its ecological importance, further exploration is essential to understand their population dynamics. RESULTS In this study, we present the complete mitogenome of the Antarctic krill. The assembly is 18,926 bp, including a notably large 3,952 bp control region (CR). The CR features a satellite repeat spanning 2,289 bp, showcasing the effectiveness of long-read sequencing in resolving complex genomic regions. Additionally, we identified 900 nuclear-mitochondrial segments (NUMTs) totaling 2.79 Mb, shedding light on the dynamic integration of mitochondrial DNA (mtDNA) into the nuclear genomes. By establishing a dataset comprising 80 krill mitogenomes, we unveil substantial mitochondrial diversity, particularly within the ND4 gene. While our analysis reveals no significant differentiation among four geographically distinct groups, we identify at least four maternal genetic clusters. Haplotype network analysis and demographic reconstructions suggest a recent population expansion, likely driven by favorable environmental conditions during the late Pleistocene. Furthermore, our investigation into selection pressures on mitochondrial genes reveals evidence of purifying selection across all 13 protein-coding genes, underscoring the pivotal role of mtDNA conservation in maintaining mitochondrial function under extreme environments. CONCLUSIONS This study provides a repository of Antarctic krill mitogenomes and insights into the population genetics and evolutionary history of this ecologically important species from a mitogenomic perspective, with implications for krill conservation and management in the Southern Ocean.
Collapse
Affiliation(s)
- Shuai Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Qingdao, 266555, China
- Shenzhen Key Laboratory of Marine Biology Genomics, BGI Research, Shenzhen, 518083, China
| | - Shuo Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Inge Seim
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Xiao Du
- BGI Research, Qingdao, 266555, China
- Shenzhen Key Laboratory of Marine Biology Genomics, BGI Research, Shenzhen, 518083, China
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China
| | - Xianwei Yang
- BGI Research, Qingdao, 266555, China
- China National GeneBank, BGI Research, Shenzhen, 518120, China
| | - Kaiqiang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Zhanfei Wei
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Changwei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| | - Guangyi Fan
- BGI Research, Qingdao, 266555, China.
- Shenzhen Key Laboratory of Marine Biology Genomics, BGI Research, Shenzhen, 518083, China.
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China.
| | - Xin Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China.
| |
Collapse
|
2
|
Fan Y, Yao D, Ma J, You F, Wei X, Ji T. Alternative Splicing and Alternative Polyadenylation-Regulated Cold Stress Response of Apis cerana. INSECTS 2024; 15:1006. [PMID: 39769608 PMCID: PMC11677483 DOI: 10.3390/insects15121006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Temperature is a pivotal ecological factor in the regulation of insect survival and reproduction [...].
Collapse
Affiliation(s)
- Yuanchan Fan
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (J.M.)
| | - Dan Yao
- Guizhou Institute of Integrated Agriculture Development, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China;
| | - Jinmeng Ma
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (J.M.)
| | - Fangdong You
- Yunnan Provincial Department of Agriculture and Rural Affairs, Yunnan Animal Husbandry Station, Kunming 650225, China;
| | - Xiaoping Wei
- Guizhou Institute of Integrated Agriculture Development, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China;
| | - Ting Ji
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (J.M.)
| |
Collapse
|
3
|
Teets NM, MacMillan HA. Editorial overview: Insect cold tolerance research reaches a Swift new Era. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101284. [PMID: 39426675 DOI: 10.1016/j.cois.2024.101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Affiliation(s)
- Nicholas M Teets
- Department of Entomology, Martin-Gaton College of Food, Agriculture, and the Environment, University of Kentucky, Lexington, KY, USA.
| | - Heath A MacMillan
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
4
|
Diaz T, Treidel LA, Menze MA, Williams CM, Lebenzon JE. Beclin-mediated Autophagy Drives Dorsal Longitudinal Flight Muscle Histolysis in the Variable Field Cricket, Gryllus lineaticeps. Integr Comp Biol 2024; 64:565-575. [PMID: 38760886 DOI: 10.1093/icb/icae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Flight muscle histolysis is a widespread strategy used by insects to break down functional flight muscle and modulate the energetic costs associated with flight muscle use and maintenance. The variable field cricket, Gryllus lineaticeps, undergoes histolysis during their transition between dispersal flight and reproduction. Despite the importance of histolysis on insect reproduction and fitness, the molecular mechanisms driving this flight muscle breakdown are not well understood. Here, we show that beclin-mediated autophagy, a conserved lysosomal-dependent degradation process, drives breakdown of dorsal longitudinal flight muscle in female flight-capable G. lineaticeps. We found that female G. lineaticeps activate autophagy in their dorsal longitudinal flight muscle (DLM), but to a greater extent than the neighboring dorsoventral flight muscle (DVM) during histolysis. RNA interference knockdown of beclin, a gene that encodes a critical autophagy initiation protein, delayed DLM histolysis, but did not affect DVM histolysis. This suggests that crickets selectively activate autophagy to break down the DLMs, while maintaining DVM function for other fitness-relevant activities such as walking. Overall, we confirmed that autophagy is a critical pathway used to remodel flight muscle cells during flight muscle histolysis, providing novel insights into the mechanisms underlying a major life history transition between dispersal and reproduction.
Collapse
Affiliation(s)
- Tomás Diaz
- Department of Integrative Biology, University of California Berkeley, 2040 Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Lisa A Treidel
- School of Biological Sciences, University of Nebraska Lincoln, 1104 T Street, Lincoln, NE 68588, USA
| | - Michael A Menze
- Department of Biology, University of Louisville, 139 Life Sciences Bldg. Louisville, KY 40292, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California Berkeley, 2040 Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Jacqueline E Lebenzon
- Department of Integrative Biology, University of California Berkeley, 2040 Valley Life Sciences Building, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Shi W, Zhang L, Zhao Y, Li X. Exendin-4 Caused Growth Arrest by Regulating Sugar Metabolism in Hyphantria cunea (Lepidoptera: Erebidae) Larvae. INSECTS 2024; 15:503. [PMID: 39057236 PMCID: PMC11276936 DOI: 10.3390/insects15070503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Insects' growth and development are highly dependent on energy supply, with sugar metabolism playing a pivotal role in maintaining homeostasis and regulating physiological processes. The present study investigated the effects of exendin-4, a glucagon-like peptide-1 receptor (GLP-1R) agonist, on the growth, development, glycolysis, and energy metabolism of fourth-instar larvae of the fall webworm, Hyphantria cunea. We determined the impact of exendin-4 on larval growth and nutritional indices, analyzed the responses of glycolytic and metabolic pathways, and revealed the underlying regulatory mechanisms. Exendin-4 treatment significantly decreased growth and nutritional indices, influenced the activity of digestive enzymes, and induced changes in metabolite profiles, particularly affecting energy substance metabolism. We observed an increase in the glycogen content and a decrease in glucose and trehalose levels in the hemolymph, suggesting a regulatory effect on blood sugar homeostasis. Furthermore, exendin-4 promoted glycolysis by enhancing the activities and expressions of key glycolytic enzymes, leading to an increase in pyruvate production. This was accompanied by a reduction in ATP levels and the activation of AMP-activated protein kinase (AMPK), which may underlie the growth arrest in larvae. Our findings provide novel insights into the effects of exendin-4 on insect responses from an energy metabolism perspective and may contribute to the development of GLP-1R agonists for pest management.
Collapse
Affiliation(s)
- Wenhui Shi
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China;
| | - Lu Zhang
- College of Forestry, Northeast Forestry University, Harbin 150040, China;
| | - Yuecheng Zhao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Xingpeng Li
- College of Forestry, Beihua University, Jilin 132013, China
| |
Collapse
|
6
|
Blanchard A, Aminot M, Gould N, Léger A, Pichaud N. Flies on the rise: acclimation effect on mitochondrial oxidation capacity at normal and high temperatures in Drosophila melanogaster. J Exp Biol 2024; 227:jeb247706. [PMID: 38841909 DOI: 10.1242/jeb.247706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Increased average temperatures and extreme thermal events (such as heatwaves) brought forth by climate change impose important constraints on aerobic metabolism. Notably, mitochondrial metabolism, which is affected by both long- and short-term temperature changes, has been put forward as an important determinant for thermal tolerance of organisms. This study examined the influence of phenotypic plasticity on metabolic and physiological parameters in Drosophila melanogaster and the link between mitochondrial function and their upper thermal limits. We showed that D. melanogaster acclimated to 15°C have a 0.65°C lower critical thermal maximum (CTmax) compared with those acclimated to 24°C. Drosophila melanogaster acclimated to 15°C exhibited a higher proportion of shorter saturated and monounsaturated fatty acids, concomitant with lower proportions of polyunsaturated fatty acids. No mitochondrial quantitative changes (fractional area and number) were detected between acclimation groups, but changes of mitochondrial oxidation capacities were observed. Specifically, in both 15°C- and 24°C-acclimated flies, complex I-induced respiration was increased when measured between 15 and 24°C, but drastically declined when measured at 40°C. When succinate and glycerol-3-phosphate were added, this decrease was however compensated for in flies acclimated to 24°C, suggesting an important impact of acclimation on mitochondrial function related to thermal tolerance. Our study reveals that the use of oxidative substrates at high temperatures is influenced by acclimation temperature and strongly related to upper thermal tolerance as a difference of 0.65°C in CTmax translates into significant mitochondrial changes.
Collapse
Affiliation(s)
- Arianne Blanchard
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Mélanie Aminot
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Nathalie Gould
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Adèle Léger
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Nicolas Pichaud
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
7
|
Boardman L. Cross-talk between low temperature and other environmental factors. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101193. [PMID: 38490451 DOI: 10.1016/j.cois.2024.101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Low temperatures are rarely experienced in isolation. The impacts of low temperatures on insects can be exacerbated or alleviated by the addition of other environmental factors, including, for example, desiccation, hypoxia, or infection. One way in which environmental factors can interact is through cross-talk where different factors enact common signaling pathways. In this review, I highlight the breadth of abiotic and biotic factors that can interact with low-temperature tolerance in both natural and artificial environments; and discuss some of the candidate pathways that are possibly responsible for cross-talk between several factors. Specifically, I discuss three interesting candidates: the neurohormone octopamine, circadian clock gene vrille, and microbes. Finally, I discuss applications of cross-talk studies, and provide recommendations for researchers.
Collapse
Affiliation(s)
- Leigh Boardman
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
8
|
Štětina T, Koštál V. Extracellular freezing induces a permeability transition in the inner membrane of muscle mitochondria of freeze-sensitive but not freeze-tolerant Chymomyza costata larvae. Front Physiol 2024; 15:1358190. [PMID: 38384799 PMCID: PMC10880108 DOI: 10.3389/fphys.2024.1358190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
Background: Many insect species have evolved the ability to survive extracellular freezing. The search for the underlying principles of their natural freeze tolerance remains hampered by our poor understanding of the mechanistic nature of freezing damage itself. Objectives: Here, in search of potential primary cellular targets of freezing damage, we compared mitochondrial responses (changes in morphology and physical integrity, respiratory chain protein functionality, and mitochondrial inner membrane (IMM) permeability) in freeze-sensitive vs. freeze-tolerant phenotypes of the larvae of the drosophilid fly, Chymomyza costata. Methods: Larvae were exposed to freezing stress at -30°C for 1 h, which is invariably lethal for the freeze-sensitive phenotype but readily survived by the freeze-tolerant phenotype. Immediately after melting, the metabolic activity of muscle cells was assessed by the Alamar Blue assay, the morphology of muscle mitochondria was examined by transmission electron microscopy, and the functionality of the oxidative phosphorylation system was measured by Oxygraph-2K microrespirometry. Results: The muscle mitochondria of freeze-tolerant phenotype larvae remained morphologically and functionally intact after freezing stress. In contrast, most mitochondria of the freeze-sensitive phenotype were swollen, their matrix was diluted and enlarged in volume, and the structure of the IMM cristae was lost. Despite this morphological damage, the electron transfer chain proteins remained partially functional in lethally frozen larvae, still exhibiting strong responses to specific respiratory substrates and transferring electrons to oxygen. However, the coupling of electron transfer to ATP synthesis was severely impaired. Based on these results, we formulated a hypothesis linking the observed mitochondrial swelling to a sudden loss of barrier function of the IMM.
Collapse
Affiliation(s)
| | - Vladimír Koštál
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| |
Collapse
|
9
|
Zhang H, Sun F, Zhang W, Gao X, Du L, Yun X, Li Y, Li L, Pang B, Tan Y. Comparative Transcriptome Analysis of Galeruca daurica Reveals Cold Tolerance Mechanisms. Genes (Basel) 2023; 14:2177. [PMID: 38136998 PMCID: PMC10742598 DOI: 10.3390/genes14122177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Galeruca daurica (Joannis) is a pest species with serious outbreaks in the Inner Mongolian grasslands in recent years, and its larvae and eggs are extremely cold-tolerant. To gain a deeper understanding of the molecular mechanism of its cold-tolerant stress response, we performed de novo transcriptome assembly of G. daurica via RNA-Seq and compared the differentially expressed genes (DEGs) of first- and second-instar larvae grown and developed indoors and outdoors, respectively. The results show that cold tolerance in G. daurica is associated with changes in gene expression mainly involved in the glycolysis/gluconeogenesis pathway, the fatty acid biosynthesis pathway and the production of heat shock proteins (HSPs). Compared with the control group (indoor), the genes associated with gluconeogenesis, fatty acid biosynthesis and HSP production were up-regulated in the larvae grown and developed outdoors. While the changes in these genes were related to the physiological metabolism and growth of insects, it was hypothesized that the proteins encoded by these genes play an important role in cold tolerance in insects. In addition, we also investigated the expression of genes related to the metabolic pathway of HSPs, and the results show that the HSP-related genes were significantly up-regulated in the larvae of G. daurica grown and developed outdoors compared with the indoor control group. Finally, we chose to induce significant expression differences in the Hsp70 gene (Hsp70A1, Hsp70-2 and Hsp70-3) via RNAi to further illustrate the role of heat stress proteins in cold tolerance on G. daurica larvae. The results show that separate and mixed injections of dsHSP70A1, dsHsp70-2 and dsHsp70-3 significantly reduced expression levels of the target genes in G. daurica larvae. The super-cooling point (SCP) and the body fluid freezing point (FP) of the test larvae were determined after RNAi using the thermocouple method, and it was found that silencing the Hsp70 genes significantly increased the SCP and FP of G. daurica larvae, which validated the role of heat shock proteins in the cold resistance of G. daurica larvae. Our findings provide an important theoretical basis for further excavating the key genes and proteins in response to extremely cold environments and analyzing the molecular mechanism of cold adaptation in insects in harsh environments.
Collapse
Affiliation(s)
- Hongling Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (H.Z.); (F.S.); (W.Z.); (Y.L.); (L.L.); (B.P.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Feilong Sun
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (H.Z.); (F.S.); (W.Z.); (Y.L.); (L.L.); (B.P.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Wenbing Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (H.Z.); (F.S.); (W.Z.); (Y.L.); (L.L.); (B.P.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Xia Gao
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010010, China;
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010020, China
| | - Lei Du
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (L.D.); (X.Y.)
| | - Xiaopeng Yun
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (L.D.); (X.Y.)
| | - Yanyan Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (H.Z.); (F.S.); (W.Z.); (Y.L.); (L.L.); (B.P.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Ling Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (H.Z.); (F.S.); (W.Z.); (Y.L.); (L.L.); (B.P.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Baoping Pang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (H.Z.); (F.S.); (W.Z.); (Y.L.); (L.L.); (B.P.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Yao Tan
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (H.Z.); (F.S.); (W.Z.); (Y.L.); (L.L.); (B.P.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010010, China;
| |
Collapse
|