1
|
Chen MD, Bai TF, Wang JX, Mai DN, Obiero GF, Getahun MN, Zhang J, Dong SL, Yan Q. Key Volatiles and ORs Mediating Oviposition Preference for Maize Plants in Chinese Population of Spodoptera frugiperda. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40492821 DOI: 10.1021/acs.jafc.5c03036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2025]
Abstract
Spodoptera frugiperda is a global pest that shows distinct preferences between maize and rice hosts. Concerning the prevailing S. frugiperda corn strains in China, we identified five maize-specific volatiles through GC-MS analysis of volatiles from maize and rice seedlings, in which benzothiazole and nonadecane were confirmed as key volatiles mediating attractants for female moths. Then, we screened for candidate odorant receptors (ORs) by analyzing differentially expressed genes between the moths exposed and unexposed to the active volatiles. Furthermore, we revealed via a Xenopus oocyte system that OR58 is narrowly tuned to benzothiazole, while OR25 exhibits a broader ligand spectrum with weak response to benzothiazole. Finally, molecular docking demonstrated OR58 and OR25 bind benzothiazole via hydrogen bonds at Thr307 and Trp157 residues, respectively, explaining their different selectivity patterns. These results provide molecular insights into host-plant preference mechanisms in S. frugiperda and identify potential targets for developing novel pest management approaches.
Collapse
Affiliation(s)
- Meng-Dan Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Teng-Fei Bai
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ji-Xiang Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan-Ni Mai
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - George F Obiero
- Department of Biological and Life Sciences, Technical University of Kenya, PO Box 52428, Nairobi 52428-00200, Kenya
| | - Merid N Getahun
- International Center of Insect Physiology and Ecology, Duduville Campus, PO Box, Nairobi 30772-00100, Kenya
| | - Jin Zhang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang-Lin Dong
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Yan
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Joshi S, Haney S, Wang Z, Locatelli F, Lei H, Cao Y, Smith B, Bazhenov M. Plasticity in inhibitory networks improves pattern separation in early olfactory processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.24.576675. [PMID: 38328149 PMCID: PMC10849730 DOI: 10.1101/2024.01.24.576675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Distinguishing between nectar and non-nectar odors is challenging for animals due to shared compounds and varying ratios in complex mixtures. Changes in nectar production throughout the day - and potentially many times within a forager's lifetime - add to the complexity. The honeybee olfactory system, containing fewer than 1,000 principal neurons in the early olfactory relay, the antennal lobe (AL), must learn to associate diverse volatile blends with rewards. Previous studies identified plasticity in the AL circuits, but its role in odor learning remains poorly understood. Using a biophysical computational network model, tuned by in vivo electrophysiological data, and live imaging of the honeybee's AL, we explored the neural mechanisms and functions of plasticity in the early olfactory system. Our findings revealed that when trained with a set of rewarded and unrewarded odors, the AL inhibitory network suppresses shared chemical compounds while enhancing responses to distinct compounds. This results in improved pattern separation and a more concise neural code. Our calcium imaging data support these predictions. Analysis of a graph convolutional neural network performing an odor categorization task revealed a similar mechanism for contrast enhancement. Our study provides insights into how inhibitory plasticity in the early olfactory network reshapes the coding for efficient learning of complex odors.
Collapse
Affiliation(s)
- Shruti Joshi
- Department of Electrical and Computer Engineering, University of California San Diego, USA
- Department of Medicine, University of California San Diego, USA
| | - Seth Haney
- Department of Medicine, University of California San Diego, USA
| | - Zhenyu Wang
- Department of Electrical, Computer and Energy Engineering, Arizona State University, USA
| | - Fernando Locatelli
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Buenos Aires, Argentina
| | - Hong Lei
- School of Life Science, Arizona State University, USA
| | - Yu Cao
- Department of Electrical and Computer Engineering, University of Minnesota, USA
| | - Brian Smith
- School of Life Science, Arizona State University, USA
| | - Maxim Bazhenov
- Department of Medicine, University of California San Diego, USA
| |
Collapse
|
4
|
Zhao Y, Li L, Wei L, Wang Y, Han Z. Advancements and Future Prospects of CRISPR-Cas-Based Population Replacement Strategies in Insect Pest Management. INSECTS 2024; 15:653. [PMID: 39336621 PMCID: PMC11432399 DOI: 10.3390/insects15090653] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Population replacement refers to the process by which a wild-type population of insect pests is replaced by a population possessing modified traits or abilities. Effective population replacement necessitates a gene drive system capable of spreading desired genes within natural populations, operating under principles akin to super-Mendelian inheritance. Consequently, releasing a small number of genetically edited insects could potentially achieve population control objectives. Currently, several gene drive approaches are under exploration, including the newly adapted CRISPR-Cas genome editing system. Multiple studies are investigating methods to engineer pests that are incapable of causing crop damage or transmitting vector-borne diseases, with several notable successful examples documented. This review summarizes the recent advancements of the CRISPR-Cas system in the realm of population replacement and provides insights into research methodologies, testing protocols, and implementation strategies for gene drive techniques. The review also discusses emerging trends and prospects for establishing genetic tools in pest management.
Collapse
Affiliation(s)
- Yu Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Longfeng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Liangzi Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yifan Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhilin Han
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
5
|
Chen Q, Liu Q, Chen Y, Du L, Zhu X, Yang Y, Zhao J, Wang Z, Song L, Li J, Ren B. Functional Characterization of the Niemann-Pick C2 Protein BdioNPC2b in the Parasitic Wasp Baryscapus dioryctriae (Chalcidodea: Eulophidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7735-7748. [PMID: 38546111 DOI: 10.1021/acs.jafc.3c09095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Reverse chemical ecology has been widely applied for the functional characterization of olfactory proteins in various arthropods, but few related studies have focused on parasitic wasps. Here, the odorant carrier Niemann-Pick C2 protein of Baryscapus dioryctriae (BdioNPC2b) was studied in vitro and in vivo. Ligand binding analysis revealed that BdioNPC2b most strongly bound to 2-butyl-2-octenal and which compound could elicit an EAG response and attracted B. dioryctriae adults. Moreover, this odorant attractant significantly improved the reproductive efficiency of B. dioryctriae compared to that of the control. Then, the relationship between BdioNPC2b and 2-butyl-2-octenal was validated by RNAi, and site-directed mutagenesis revealed the involvement of three key residues of BdioNPC2b in binding to 2-butyl-2-octenal through hydrogen bonding. Our findings provide not only a deeper understanding of the olfactory function of NPC2 in wasps but also useful information for improving the performance of the parasitoid B. dioryctriae as a biological control agent.
Collapse
Affiliation(s)
- Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Qingxin Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Yuanxu Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Lin Du
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Xiaoyan Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Yi Yang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Jingyi Zhao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Zizhuo Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| | - Liwen Song
- Research Institute of Forest Protection, Jilin Provincial Academy of Forestry Sciences, Changchun 130033, China
| | - Jing Li
- Research Institute of Forest Protection, Jilin Provincial Academy of Forestry Sciences, Changchun 130033, China
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130024, China
| |
Collapse
|