1
|
Malta KK, Silva TP, Palazzi C, Neves VH, Carmo LAS, Cardoso SJ, Melo RCN. Changing our view of the Schistosoma granuloma to an ecological standpoint. Biol Rev Camb Philos Soc 2021; 96:1404-1420. [PMID: 33754464 DOI: 10.1111/brv.12708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
Schistosomiasis, a neglected parasitic tropical disease that has plagued humans for centuries, remains a major public health burden. A primary challenge to understanding schistosomiasis is deciphering the most remarkable pathological feature of this disease, the granuloma - a highly dynamic and self-organized structure formed by both host and parasite components. Granulomas are considered a remarkable example of how parasites evolved with their hosts to establish complex and intimate associations. However, much remains unclear regarding life within the granuloma, and strategies to restrain its development are still lacking. Here we explore current information on the hepatic Schistosoma mansoni granuloma in the light of Ecology and propose that this intricate structure acts as a real ecosystem. The schistosomal granuloma is formed by cells (biotic component), protein scaffolds, fibres, and chemical compounds (abiotic components) with inputs/outputs of energy and matter, as complex as in classical ecosystems. We review the distinct cell populations ('species') within the granuloma and examine how they integrate with each other and interact with their microenvironment to form a multifaceted cell community in different space-time frames. The colonization of the hepatic tissue to form granulomas is explained from the point of view of an ecological succession whereby a community is able to modify its physical environment, creating conditions and resources for ecosystem construction. Remarkably, the granuloma represents a dynamic evolutionary system that undergoes progressive changes in the 'species' that compose its community over time. In line with ecological concepts, we examine the granuloma not only as a place where a community of cells is settled (spatial niche or habitat) but also as a site in which the functional activities of these combined populations occur in an orchestrated way in response to microenvironmental gradients such as cytokines and egg antigens. Finally, we assert how the levels of organization of cellular components in a granuloma as conventionally defined by Cell Biology can fit perfectly into a hierarchical structure of biological systems as defined by Ecology. By rethinking the granuloma as an integrating and evolving ecosystem, we draw attention to the inner workings of this structure that are central to the understanding of schistosomiasis and could guide its future treatment.
Collapse
Affiliation(s)
- Kássia K Malta
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Cinthia Palazzi
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Cell Biology, Federal University of Minas Gerais, Belo Horizonte, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Vitor H Neves
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Cell Biology, Federal University of Minas Gerais, Belo Horizonte, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Lívia A S Carmo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Department of Medicine, Federal University of Alagoas, Rodovia AL-115, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Simone J Cardoso
- Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Laboratory of Plankton Ecology, Department of Zoology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Cell Biology, Federal University of Minas Gerais, Belo Horizonte, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
2
|
Alonso-Hearn M, Magombedze G, Abendaño N, Landin M, Juste RA. Deciphering the virulence of Mycobacterium avium subsp. paratuberculosis isolates in animal macrophages using mathematical models. J Theor Biol 2019; 468:82-91. [PMID: 30794839 DOI: 10.1016/j.jtbi.2019.01.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 12/03/2018] [Accepted: 01/21/2019] [Indexed: 01/21/2023]
Abstract
Understanding why pathogenic Mycobacterium avium subsp. paratuberculosis (Map) isolates cause disparate disease outcomes with differing magnitudes of severity is important in designing and implementing new control strategies. We applied a suite of mathematical models: i) general linear, ii) and neurofuzzy logic, to explain how the host of origin of several Map isolates, Map genotype, host, macrophage-based in vitro model and time post-infection contributed to the infection. A logistic growth ordinary differential equation (ODE) model was applied to estimate within macrophage growth rates for the different Map isolates. The models revealed different susceptibilities of bovine and ovine macrophages to Map infection and confirmed distinct virulence profiles for the isolates, judged by their ability to grow within macrophages. Ovine macrophages were able to internalize Map isolates more efficiently than bovine macrophages. While bovine macrophages were able to internalize Map isolates from cattle with more efficiency, ovine macrophages were more efficient in internalizing ovine isolates. Overall, Map isolates from goat and sheep grew minimally within macrophages or did not grow but were able to persist by maintaining its initial population. In contrast, the ability of the bovine isolates and the non-domesticated animal isolates to grow to higher CFU numbers within macrophages suggests that these isolates are more virulent than the sheep and goat isolates, or that these isolates are better adapted to infect domestic ruminants. Overall, our study confirms the different virulence levels for the Map isolates and susceptibility profiles of host macrophages, which is crucial in increasing our understanding of Map infection.
Collapse
Affiliation(s)
- Marta Alonso-Hearn
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Derio, 48160 Bizkaia, Spain.
| | - Gesham Magombedze
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor University Medical Center, 75204 Dallas, TX, USA
| | - Naiara Abendaño
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Derio, 48160 Bizkaia, Spain
| | - Mariana Landin
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ramon A Juste
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Derio, 48160 Bizkaia, Spain
| |
Collapse
|