1
|
Dragar Č, Rekar Ž, Potrč T, Nemec S, Kralj S, Kocbek P. Influence of Polymer Concentration on Drying of SPION Dispersions by Electrospinning. Pharmaceutics 2023; 15:1619. [PMID: 37376067 DOI: 10.3390/pharmaceutics15061619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
To improve the physical stability of nanoparticle dispersions, several methods for their transformation into stable and easily dispersible dry products have been investigated thus far. Recently, electrospinning was shown to be a novel nanoparticle dispersion drying method, which addresses the crucial challenges of the current drying methods. It is a relatively simple method, but it is affected by various ambient, process, and dispersion parameters, which impact the properties of the electrospun product. The aim of this study was, thus, to investigate the influence of the most important dispersion parameter, namely the total polymer concentration, on the drying method efficiency and the properties of the electrospun product. The formulation was based on a mixture of hydrophilic polymers poloxamer 188 and polyethylene oxide in the weight ratio of 1:1, which is acceptable for potential parenteral application. We showed that the total polymer concentration of prior-drying samples is closely related to their viscosity and conductivity, also affecting the morphology of the electrospun product. However, the change in morphology of the electrospun product does not affect the efficiency of SPION reconstitution from the electrospun product. Regardless of the morphology, the electrospun product is not in powder form and is therefore safer to handle compared to powder nanoformulations. The optimal total polymer concentration in the prior-drying SPION dispersion, which enables the formation of an easily dispersible electrospun product with high SPION-loading (65% (w/w)) and fibrillar morphology, was shown to be 4.2% (w/v).
Collapse
Affiliation(s)
- Črt Dragar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Žan Rekar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Tanja Potrč
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Sebastjan Nemec
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Department for Materials Synthesis, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Slavko Kralj
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Department for Materials Synthesis, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
- Nanos SCI, Nanos Scientificae d.o.o., SI-1000 Ljubljana, Slovenia
| | - Petra Kocbek
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Tarannum N, Pooja K. Recent trends and applications in the research and development activities of redispersible powder: a vision of twenty-first century. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Marques MS, Lima LA, Poletto F, Contri RV, Kulkamp Guerreiro IC. Nanotechnology for the treatment of paediatric diseases: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Verma V, Ryan KM, Padrela L. Production and isolation of pharmaceutical drug nanoparticles. Int J Pharm 2021; 603:120708. [PMID: 33992712 DOI: 10.1016/j.ijpharm.2021.120708] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/23/2022]
Abstract
Nanosizing of pharmaceutical drug particles is one of the most important drug delivery platforms approaches for the commercial development of poorly water-soluble drug molecules. Though nanosizing of drug particles has been proven to greatly enhance drugs dissolution rate and apparent solubility, nanosized materials have presented significant challenges for their formulation as solid dosage forms (e.g. tablets, capsules). This is due to the strong Van der Waals attraction forces between dry nanoparticles leading to aggregation, cohesion, and consequently poor flowability. In this review, the broad area of nanomedicines is overviewed with the primary focus on drug nanocrystals and the top-down and bottom-up methods used in their fabrication. The review also looks at how nanosuspensions of pharmaceutical drugs are generated and stabilised, followed by subsequent strategies for isolation of the nanoparticles. A perspective on the future outlook for drug nanocrystals is also presented.
Collapse
Affiliation(s)
- Vivek Verma
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Kevin M Ryan
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Luis Padrela
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
5
|
Gupta S, Wairkar S, Bhatt LK. Isotretinoin and α-tocopherol acetate-loaded solid lipid nanoparticle topical gel for the treatment of acne. J Microencapsul 2020; 37:557-565. [PMID: 32924680 DOI: 10.1080/02652048.2020.1823499] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS This study was aimed to develop Isotretinoin (ITN) and α-tocopherol acetate (α-TA) loaded solid lipid nanoparticle topical gel for better skin sensitivity and potentiation of efficacy. METHODS ITN and α-TA-loaded solid lipid nanoparticles (AE-SLN) were prepared by microemulsion method with glyceryl mono-stearate as lipid and tween 80: butanol as surfactantmix and characterised. AE-SLN gel was evaluated for physicochemical characteristics, drug release, skin irritation and anti-acne activity in rats. RESULTS AE-SLNs had mean particle size of 193.4 nm (zeta-potential -29 mV) and entrapment efficiency of 84%w/w for ITN and 77.4%w/w for α-TA. AE-SLN gel showed sustained drug release for 24 h with a final cumulative release of 95.8% w/w and 89.1%w/w for ITN and α-TA. AE-SLN gel showed no erythema or edoema in rabbits and potent efficacy in rat model of acne. CONCLUSION In conclusion, AE-SLN gel has the potential to use as a non-irritant topical formulation for the treatment of acne.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
6
|
Reconstituted spray-dried phenytoin-loaded nanocapsules improve the in vivo phenytoin anticonvulsant effect and the survival time in mice. Int J Pharm 2018; 551:121-132. [DOI: 10.1016/j.ijpharm.2018.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/28/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022]
|
7
|
de Andrade DF, de Oliveira EG, Pohlmann AR, Guterres SS, Külkamp-Guerreiro IC, Beck RCR. Fluid bed granulation as an innovative process to produce dry redispersible nanocapsules: Influence of cationic coating of particles. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2017.12.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Kelidari HR, Saeedi M, Akbari J, Morteza-semnani K, Valizadeh H, Maniruzzaman M, Farmoudeh A, Nokhodchi A. Development and Optimisation of Spironolactone Nanoparticles for Enhanced Dissolution Rates and Stability. AAPS PharmSciTech 2017; 18:1469-1474. [PMID: 27834054 DOI: 10.1208/s12249-016-0621-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/17/2016] [Indexed: 11/30/2022] Open
Abstract
Stable solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) formulations to enhance the dissolution rates of poorly soluble drug spironolactone (SP) were being developed. Probe ultra-sonication method was used to prepare SLNs and NLCs. All NLCs contained stearic acid (solid lipid carrier) and oleic acid (liquid lipid content), whereas, SLNs were prepared and optimised by using the solid lipid only. The particles were characterised in terms of particle size analysis, thermal behaviour, morphology, stability and in vitro release. The zeta sizer data revealed that the increase in the concentration of oleic acid in the formulations reduced the mean particle size and the zeta potential. The increase in concentration of oleic acid from 0 to 30% (w/w) resulted in a higher entrapment efficiency. All nanoparticles were almost spherically shaped with an average particle size of about ∼170 nm. The DSC traces revealed that the presence of oleic acid in the NLC formulations resulted in a shift in the melting endotherms to a higher temperature. This could be attributed to a good long-term stability of the nanoparticles. The stability results showed that the particle size remained smaller in NLC compared to that of SLN formulations after 6 months at various temperatures. The dissolution study showed about a 5.1- to 7.2-fold increase in the release of the drug in 2 h compared to the raw drug. Comparing all nanoparticle formulations indicated that the NLC composition with a ratio of 70:30 (solid:liquid lipid) is the most suitable formulation with desired drug dissolution rates, entrapment efficiency and physical stability.
Collapse
|
9
|
Cortes-Rojas DF, Souza CRF, Chen MJ, Hochhaus G, Oliveira WP. Effects of lipid formulations on clove extract spray dried powders: comparison of physicochemical properties, storage stability and in vitro intestinal permeation. Pharm Dev Technol 2017; 23:1047-1056. [PMID: 28368215 DOI: 10.1080/10837450.2017.1314491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clove is an aromatic plant spice with potent antioxidant and anti-inflammatory activity. Eugenol is the main compound which contributes to such medicinal and nutritional benefits. To date, the formulation of unstable, volatile and poorly water-soluble compounds remains a challenging task. Lipid formulations can be used to improve physicochemical and biopharmaceutical properties of poorly soluble compounds. The aim of this study is to investigate the effects of lipids, such as Gelucire and Compritol on physicochemical properties; stability and in vitro intestinal permeation of spray dried powdered formulations loaded with clove's bioactive compounds. Results showed that eugenol retention in spray-dried powders could be correlated with antioxidant activity and with mass recovery after spray drying. Adding Gelucire but not Compritol to clove extract formulations, improved solubility of spray dried powders. Stability test in high humidity environment (63.5% RH) suggested that formulations including both Gelucire and Compritol were significantly more stable compared to the formulation without any lipid at the two tested temperatures (25 °C and 40 °C). This suggests that lipid additions to clove (Syzygium aromaticum) extract formulations provide protective effects for the spray dried powders in high-humidity environments. In addition, results from in vitro intestinal permeation studies suggested that eugenol uptake, was not being hindered by transporters nor was the absorption being affected by lipid formulations.
Collapse
Affiliation(s)
- Diego F Cortes-Rojas
- a Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Claudia R F Souza
- a Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Mong-Jen Chen
- b Department of Pharmaceutics , College of Pharmacy, University of Florida , Gainesville , FL , USA
| | - Guenther Hochhaus
- b Department of Pharmaceutics , College of Pharmacy, University of Florida , Gainesville , FL , USA
| | - Wanderley P Oliveira
- a Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|
10
|
Stauch C, Ballweg T, Stracke W, Luxenhofer R, Mandel K. Burstable nanostructured micro-raspberries: Towards redispersible nanoparticles from dry powders. J Colloid Interface Sci 2017; 490:401-409. [DOI: 10.1016/j.jcis.2016.11.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 11/25/2022]
|
11
|
Hazzah HA, Farid RM, Nasra MMA, Hazzah WA, El-Massik MA, Abdallah OY. Gelucire-Based Nanoparticles for Curcumin Targeting to Oral Mucosa: Preparation, Characterization, and Antimicrobial Activity Assessment. J Pharm Sci 2015. [PMID: 26202796 DOI: 10.1002/jps.24590] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The purpose of the study was to prepare and characterize curcumin (Cur) solid lipid nanoparticles (CurSLN) with a high-loading capacity and chemical stability for the treatment of oral mucosal infection. CurSLN were formulated using different lipids, namely, Gelucire 39/01, Gelucire 50/13, Precirol, Compritol, and poloxamer 407 as a surfactant. Formulae were evaluated for their entrapment efficiency, particle size, and ex vivo mucoadhesion test. Microbiological evaluation was carried out on six microorganisms, five of which are the most commonly affecting oral cavity in terms of determination of minimum inhibitory concentration (MIC), and minimum bactericidal concentration. Transmission electron microscopy was conducted for ultrathin section for Candida albicans-treated with formulated Cur. The results showed high entrapment efficiency and stability enhancement for Cur powder. Significant amount of Cur was retained onto the mucosal tissue indicating preferential mucosal uptake. CurSLN showed higher antimicrobial activity as compared with Cur raw material and chemically stabilized Cur where it showed MIC (0.185, 0.09375, 0.75, 3, 1.5, and 0.1875 mg/mL) against Staphylococcus aureus, Streptococcus mutans, Viridansstrept, Escherichia coli, Lactobacillus acidophilus, and Candida albicans, respectively. The prepared lipid nanoparticles maintained Cur chemical stability and microbiological activity. The lack of local antimicrobial therapeutics with minimum side effects augments the importance of studying natural products for this purpose.
Collapse
Affiliation(s)
- Heba A Hazzah
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt.
| | - Ragwa M Farid
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Maha M A Nasra
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Walaa A Hazzah
- Department of Microbiology, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Magda A El-Massik
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Kelidari H, Saeedi M, Akbari J, Morteza-Semnani K, Gill P, Valizadeh H, Nokhodchi A. Formulation optimization and in vitro skin penetration of spironolactone loaded solid lipid nanoparticles. Colloids Surf B Biointerfaces 2015; 128:473-479. [DOI: 10.1016/j.colsurfb.2015.02.046] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/03/2015] [Accepted: 02/25/2015] [Indexed: 11/27/2022]
|
13
|
Cortés-Rojas DF, Souza CR, Oliveira WP. Encapsulation of eugenol rich clove extract in solid lipid carriers. J FOOD ENG 2014. [DOI: 10.1016/j.jfoodeng.2013.11.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Bhakay A, Azad M, Bilgili E, Dave R. Redispersible fast dissolving nanocomposite microparticles of poorly water-soluble drugs. Int J Pharm 2013; 461:367-79. [PMID: 24333905 DOI: 10.1016/j.ijpharm.2013.11.059] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/09/2013] [Accepted: 11/30/2013] [Indexed: 10/25/2022]
Abstract
Enhanced recovery/dissolution of two wet media-milled, poorly water-soluble drugs, Griseofulvin (GF) and Azodicarbonamide (AZD), incorporated into nanocomposite microparticles (NCMPs) via fluidized bed drying (FBD) and spray-drying (SD) was investigated. The effects of drying method, drug loading, drug aqueous solubility/wettability as well as synergistic stabilization of the milled suspensions on nanoparticle recovery/dissolution were examined. Drug nanoparticle recovery from FBD and SD produced NCMPs having high drug loadings was evaluated upon gentle redispersion via optical microscopy and laser diffraction. During wet-milling, hydroxypropyl cellulose (HPC) alone stabilized more wettable drug (AZD) nanoparticles with slight aggregation, but could not prevent aggregation of the GF nanoparticles. In contrast, well-dispersed, stable nanosuspensions of both drugs were produced when sodium dodecyl sulfate (SDS) and HPC were combined. The FBD and SD NCMPs without SDS exhibited incomplete nanoparticle recovery, causing slower dissolution for GF, but not for AZD, likely due to higher aqueous solubility/wettability of AZD. For high active loaded NCMPs (FBD ∼50 wt%, SD ∼80 wt%) of either drug, HPC-SDS together owing to their synergistic stabilization led to fast redispersibility/dissolution, corroborated via optical microscopy and particle sizing. These positive attributes can help development of smaller, high drug-loaded dosage forms having enhanced bioavailability and better patient compliance.
Collapse
Affiliation(s)
- Anagha Bhakay
- Otto H. York Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Mohammad Azad
- Otto H. York Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Ecevit Bilgili
- Otto H. York Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Rajesh Dave
- Otto H. York Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, USA.
| |
Collapse
|