1
|
An X, Sun M, Ren K, Xu M, Wang Z, Li Y, Liu H, Lian B. Effect and mechanism of the improvement of coastal silt soil by application of organic fertilizer and gravel combined with Sesbania cannabina cultivation. FRONTIERS IN PLANT SCIENCE 2022; 13:1092089. [PMID: 36618651 PMCID: PMC9815860 DOI: 10.3389/fpls.2022.1092089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Jiangsu Province of China has a large area of coastal silt soil (CSS) with poor permeability, high salinity, and poor nutrients, which brings great difficulties to the development and utilization of coastal zones, so that needs to be improved as a matter of urgency. In this study, river-sand, serpentine, and organic fertilizer were used as additives in CSS, and Sesbania cannabina, a salt-tolerant cash crop, was planted in these differently treated soils. Through high-throughput sequencing, analysis of soil physico-chemical properties, and detection of plant growth status, the rhizosphere bacterial diversity of S. cannabina growing in CSS under different treatments and their environmental impact factors were studied, while exploring the effect and mechanism of organic fertilizer combined with gravel as a CSS modifier. The results implied that single application of organic fertilizer could significantly increase the fertility levels of total nitrogen (TN), total organic carbon (TOC) and Avail. P in CSS; then, the application of organic fertilizer with river-sand significantly reduced salt content and alkalinity of soil; meanwhile, in the treatment of single application of organic fertilizer and application of organic fertilizer combined with river-sand, the rhizosphere of S. cannabina enriched the bacterial communities of organic matter degradation and utilization to varying degrees. The soil moisture content and indicators related to saline-alkali soil (including total salt, electrical conductivity (EC), exchangeable sodium percentage (ESP), Avail. Na and Avail. K, etc.) were further reduced significantly by the application of organic fertilizer combined with river-sand and serpentine. The method has greatly improved the growth conditions of S. cannabina and promoted the positive development of its rhizosphere bacterial community. Among them, in the treatment of organic fertilizer combined with river-sand and serpentine, a variety of plant growth-promoting rhizobacteria (PGPR, such as Sphingomonas, Ensifer, and Rhodobacter) and nitrogen-cycle-related bacteria (such as nitrate-reduction-related bacteria, nitrogen-fixing bacteria like Ensifer, and purple non-sulfur photosynthetic bacteria like Rhodobacter) were enriched in the rhizosphere of S. cannabina; moreover, the mutual association and robustness of bacterial co-occurrence networks have been significantly enhanced. The results provide a theoretical basis and reference model for the improvement of coastal saline-alkali silt soil.
Collapse
|
2
|
Liosis C, Papadopoulou A, Karvelas E, Karakasidis TE, Sarris IE. Heavy Metal Adsorption Using Magnetic Nanoparticles for Water Purification: A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7500. [PMID: 34947096 PMCID: PMC8707578 DOI: 10.3390/ma14247500] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022]
Abstract
Research on contamination of groundwater and drinking water is of major importance. Due to the rapid and significant progress in the last decade in nanotechnology and its potential applications to water purification, such as adsorption of heavy metal ion from contaminated water, a wide number of articles have been published. An evaluating frame of the main findings of recent research on heavy metal removal using magnetic nanoparticles, with emphasis on water quality and method applicability, is presented. A large number of articles have been studied with a focus on the synthesis and characterization procedures for bare and modified magnetic nanoparticles as well as on their adsorption capacity and the corresponding desorption process of the methods are presented. The present review analysis shows that the experimental procedures demonstrate high adsorption capacity for pollutants from aquatic solutions. Moreover, reuse of the employed nanoparticles up to five times leads to an efficiency up to 90%. We must mention also that in some rare occasions, nanoparticles have been reused up to 22 times.
Collapse
Affiliation(s)
- Christos Liosis
- Department of Civil Engineering, University of Thessaly, 38334 Volos, Greece;
| | - Athina Papadopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Evangelos Karvelas
- Department of Mechanical Engineering, University of West Attica, 12243 Athens, Greece; (E.K.); (I.E.S.)
- Condensed Matter Physics Lab, Department of Physics, University of Thessaly, 35100 Lamia, Greece
| | - Theodoros E. Karakasidis
- Condensed Matter Physics Lab, Department of Physics, University of Thessaly, 35100 Lamia, Greece
| | - Ioannis E. Sarris
- Department of Mechanical Engineering, University of West Attica, 12243 Athens, Greece; (E.K.); (I.E.S.)
| |
Collapse
|
3
|
Lee SJ, Han YL, Park SJ, Park JW. Optimal generation number in magnetic-cored dendrimers as Pb(II) and Cd(II) adsorbents. ENVIRONMENTAL TECHNOLOGY 2020; 41:3412-3419. [PMID: 31074332 DOI: 10.1080/09593330.2019.1611935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
As the generation number of dendrimers increases, more organic branches and terminal groups are synthesized on the surface. However, this may not be actual situations in all generations of dendrimers. Different generations of magnetic cored dendrimer (MCD) terminalized with amine functional groups were compared as adsorbents for heavy metal ions in water. To determine the optimal generation number as adsorbent, the maximal adsorption of lead and cadmium on generation 1, 2, and 3 (G1, G2, and G3) MCDs. Higher generation MCD had more organic contents and possibly terminal groups on its structure. However, G2 MCD was the highest in adsorbing both lead and cadmium. An acid-base titration was performed to quantify the amine functional groups. The active amine sites on G2 are 4.35 times as much as that of G1 and 0.12 times as much as that of G3, which coincided with the adsorption experimental result. Incomplete dendritic structure formation due to steric hindrance caused G2 MCD to be the most efficient among the three generations of MCDs in this research.
Collapse
Affiliation(s)
- Soo-Jin Lee
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Ye-Lim Han
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Sung Jik Park
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Jae-Woo Park
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea
| |
Collapse
|
4
|
Removal of pharmaceuticals by novel magnetic genipin-crosslinked chitosan/graphene oxide-SO3H composite. Carbohydr Polym 2019; 220:141-148. [DOI: 10.1016/j.carbpol.2019.05.060] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/05/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
|
5
|
Esterification of Sesbania Gum Hydrolysate in Ionic Liquid, Optimization and Characterization of Its Derivatives. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-019-03844-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Lan S, Lu Y, Li C, Zhao S, Liu N, Sheng X. Sesbania Gum-Supported Hydrophilic Electrospun Fibers Containing Nanosilver with Superior Antibacterial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E592. [PMID: 30974842 PMCID: PMC6523858 DOI: 10.3390/nano9040592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 11/16/2022]
Abstract
In this contribution, we report for the first time on a new strategy for developing sesbania gum-supported hydrophilic fibers containing nanosilver using electrospinning (SG-Ag/PAN electrospun fibers), which gives the fibers superior antibacterial activity. Employing a series of advanced technologies-scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, UV-visible absorption spectroscopy, X-ray photoelectron spectroscopy, and contact angle testing-we characterized the as-synthesized SG-Ag/PAN electrospun fibers in terms of morphology, size, surface state, chemical composition, and hydrophilicity. By adjusting the synthesis conditions, in particular the feed ratio of sesbania gum (SG) and polyacrylonitrile (PAN) to Ag nanoparticles (NPs), we regulated the morphology and size of the as-electrospun fibers. The fibers' antibacterial properties were examined using the colony-counting method with two model bacteria: Escherichia coli (a Gram-negative bacterium) and Staphylococcus aureus (a Gram-positive bacterium). Interestingly, compared to Ag/PAN and SG-PAN electrospun fibers, the final SG-Ag/PAN showed enhanced antibacterial activity towards both of the model bacteria due to the combination of antibacterial Ag NPs and hydrophilic SG, which enabled the fibers to have sufficient contact with the bacteria. We believe this strategy has great potential for applications in antibacterial-related fields.
Collapse
Affiliation(s)
- Shi Lan
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Yaning Lu
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Chun Li
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Shuang Zhao
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Naren Liu
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Xianliang Sheng
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
7
|
Citrus pectin derived ultrasmall Fe3O4@C nanoparticles as a high-performance adsorbent toward removal of methylene blue. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.07.144] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
8
|
Yao Q, Gao Y, Gao T, Zhang Y, Harnoode C, Dong A, Liu Y, Xiao L. Surface arming magnetic nanoparticles with amine N-halamines as recyclable antibacterial agents: Construction and evaluation. Colloids Surf B Biointerfaces 2016; 144:319-326. [DOI: 10.1016/j.colsurfb.2016.04.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 03/22/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
|
9
|
Sousa FL, Daniel-da-Silva AL, Silva NJO, Trindade T. Bionanocomposites for Magnetic Removal of Water Pollutants. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-81-322-2473-0_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
10
|
Guo X, Du B, Wei Q, Yang J, Hu L, Yan L, Xu W. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water. JOURNAL OF HAZARDOUS MATERIALS 2014; 278:211-20. [PMID: 25016452 DOI: 10.1016/j.jhazmat.2014.05.075] [Citation(s) in RCA: 277] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/11/2014] [Accepted: 05/27/2014] [Indexed: 05/25/2023]
Abstract
In the present study, a kind of graphenes magnetic material (Fe3O4-GS) was prepared by compositing graphene sheet with ferroferric oxide, and shown to be effective for removing Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) ions from aqueous solution. The synthesized sorbent was characterized by SEM, TEM, FTIR, XRD, XPS and BET, respectively. The pHZPC value of the sorbent was estimated to be 3.5 by alkaline-titration methods. Fe3O4-GS can be simply recovered from water with magnetic separation at low magnetic field within one minute. The sorption capacities of the metals were 17.29, 27.95, 23.03, 27.83 and 22.07 mg g(-1) for Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II), respectively. Kinetic data showed good correlation with pseudo-second-order equation and the Freundlich model was found to fit for the isotherm data of all the heavy metal ions. It was found that the metals sorption was accomplished mainly via chelation or ion exchange. The results of thermodynamic studies illustrate that the adsorption process was endothermic and spontaneous in nature.
Collapse
Affiliation(s)
- Xiaoyao Guo
- School of Resources and Environment, University of Jinan, Jinan 250022, China
| | - Bin Du
- School of Resources and Environment, University of Jinan, Jinan 250022, China.
| | - Qin Wei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Jian Yang
- School of Resources and Environment, University of Jinan, Jinan 250022, China
| | - Lihua Hu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Liangguo Yan
- School of Resources and Environment, University of Jinan, Jinan 250022, China
| | - Weiying Xu
- School of Resources and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
11
|
|