1
|
Chakraborty S, Das R, Riyaz M, Das K, Singh AK, Bagchi D, Vinod CP, Peter SC. Wurtzite CuGaS 2 with an In-Situ-Formed CuO Layer Photocatalyzes CO 2 Conversion to Ethylene with High Selectivity. Angew Chem Int Ed Engl 2023; 62:e202216613. [PMID: 36537874 DOI: 10.1002/anie.202216613] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
We present surface reconstruction-induced C-C coupling whereby CO2 is converted into ethylene. The wurtzite phase of CuGaS2. undergoes in situ surface reconstruction, leading to the formation of a thin CuO layer over the pristine catalyst, which facilitates selective conversion of CO2 to ethylene (C2 H4 ). Upon illumination, the catalyst efficiently converts CO2 to C2 H4 with 75.1 % selectivity (92.7 % selectivity in terms of Relectron ) and a 20.6 μmol g-1 h-1 evolution rate. Subsequent spectroscopic and microscopic studies supported by theoretical analysis revealed operando-generated Cu2+ , with the assistance of existing Cu+ , functioning as an anchor for the generated *CO and thereby facilitating C-C coupling. This study demonstrates strain-induced in situ surface reconstruction leading to heterojunction formation, which finetunes the oxidation state of Cu and modulates the CO2 reduction reaction pathway to selective formation of ethylene.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India
| | - Risov Das
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India
| | - Mohd Riyaz
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India
| | - Kousik Das
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India
| | - Ashutosh Kumar Singh
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India.,Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India
| | - Debabrata Bagchi
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India
| | - Chathakudath P Vinod
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 410008, India
| | - Sebastian C Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore, 560064, India
| |
Collapse
|
2
|
Huang L, Su R, Xi F. Sensitive detection of noradrenaline in human whole blood based on Au nanoparticles embedded vertically-ordered silica nanochannels modified pre-activated glassy carbon electrodes. Front Chem 2023; 11:1126213. [PMID: 36874060 PMCID: PMC9974660 DOI: 10.3389/fchem.2023.1126213] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Sensitive determination of noradrenaline (NE), the pain-related neurotransmitters and hormone, in complex whole blood is of great significance. In this work, an electrochemical sensor was simply constructed on the pre-activated glassy carbon electrode (p-GCE) modified with vertically-ordered silica nanochannels thin film bearing amine groups (NH2-VMSF) and in-situ deposited Au nanoparticles (AuNPs). The simple and green electrochemical polarization was employed to pre-activate GCE to realize the stable binding of NH2-VMSF on the surface of electrode without the use of any adhesive layer. NH2-VMSF was conveniently and rapidly grown on p-GCE by electrochemically assisted self-assembly (EASA). With amine group as the anchor sites, AuNPs were in-situ electrochemically deposited on the nanochannels to improve the electrochemical signals of NE. Owing to signal amplification from gold nanoparticles, the fabricated AuNPs@NH2-VMSF/p-GCE sensor can achieve electrochemical detection of NE ranged from 50 nM to 2 μM and from 2 μM to 50 μM with a low limit of detection (LOD) of 10 nM. The constructed sensor exhibited high selectivity and can be easily regenerated and reused. Owing to the anti-fouling ability of nanochannel array, direct electroanalysis of NE in human whole blood was also realized.
Collapse
Affiliation(s)
| | - Ruobing Su
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fengna Xi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
3
|
Radhakrishnan J, Kareem A, Ratna S, Senthilkumar S, Biswas K. Snowflake-like Metastable Wurtzite CuGaS 2/MoS 2 Composite with Superior Electrochemical HER Activity. ACS OMEGA 2022; 7:43883-43893. [PMID: 36506218 PMCID: PMC9730465 DOI: 10.1021/acsomega.2c05116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
In the present work, we report the synthesis of wurtzite CuGaS2 and its composite with MoS2 and explored their efficacy toward two important applications, viz. electrocatalytic hydrogen evolution reaction (HER) and adsorption of Rhodamine B dye. The CuGaS2 was synthesized via a low-temperature ethylenediamine-mediated solvothermal method. The obtained products were characterized by various techniques such as X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy to ascertain the phase formation, surface morphology, and elemental oxidation states. The electrocatalytic activity of the wurtzite CuGaS2 and CuGaS2/MoS2 composites toward HER was investigated, wherein the CuGaS2/MoS2 composite exhibited superior activity when compared to the pristine sample with a small Tafel slope of 56.2 mV dec-1 and an overpotential value of -464 mV at the current density of 10 mA cm-2. On the other hand, the synthesized CuGaS2 also showed an impressive adsorption behavior toward Rhodamine B dye with 99% adsorption in 60 min, which is relatively better than that observed with the composite material.
Collapse
Affiliation(s)
- Jagan Radhakrishnan
- Chemistry
Division, School of Advanced Sciences, Vellore
Institute of Technology, Chennai600127, India
| | - Abdul Kareem
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore632014, India
| | - Srabanti Ratna
- Chemistry
Division, School of Advanced Sciences, Vellore
Institute of Technology, Chennai600127, India
| | - Sellappan Senthilkumar
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore632014, India
| | - Krishnendu Biswas
- Chemistry
Division, School of Advanced Sciences, Vellore
Institute of Technology, Chennai600127, India
| |
Collapse
|
4
|
Emran MY, Shenashen MA, Elmarakbi A, Selim MM, El-Safty SA. Nitrogen-doped carbon hollow trunk-like structure as a portable electrochemical sensor for noradrenaline detection in neuronal cells. Anal Chim Acta 2022; 1192:339380. [DOI: 10.1016/j.aca.2021.339380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
|
5
|
Emran MY, Shenashen MA, El-Safty SA, Selim MM, Minowa T, Elmarakbi A. Three-Dimensional Circular Surface Curvature of a Spherule-Based Electrode for Selective Signaling and Dynamic Mobility of Norepinephrine in Living Cells. ACS APPLIED BIO MATERIALS 2020; 3:8496-8506. [DOI: 10.1021/acsabm.0c00882] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mohammed Y. Emran
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan
| | - Mohamed A. Shenashen
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan
| | - Sherif A. El-Safty
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan
| | - Mahmoud M. Selim
- Department of Mathematics, Al-Aflaj College of Science and Human Studies, Prince Sattam Bin Abdulaziz University, Al-Aflaj 710-11912, Saudi Arabia
| | - Takashi Minowa
- Nanotechnology Innovation Station, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Ahmed Elmarakbi
- Department of Mechanical & Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| |
Collapse
|
6
|
Wu S, Pang H, Zhou W, Yang B, Meng X, Qiu X, Chen G, Zhang L, Wang S, Liu X, Ma R, Ye J, Zhang N. Stabilizing CuGaS 2 by crystalline CdS through an interfacial Z-scheme charge transfer for enhanced photocatalytic CO 2 reduction under visible light. NANOSCALE 2020; 12:8693-8700. [PMID: 32267285 DOI: 10.1039/d0nr00483a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
CuGaS2 is one of the most excellent visible-light-active photocatalysts for CO2 reduction and water splitting. However, CuGaS2 suffers from serious deactivation in photocatalytic reactions, which is mainly due to the photo-oxidation induced self-corrosion (Cu+ to Cu2+). Here, we constructed a CuGaS2/CdS hybrid photocatalyst dominated by a Z-scheme charge transfer mechanism. The transfer of photo-generated electrons from excited nanocrystalline CdS to CuGaS2 across the coherent interface reduces Cu2+ formation and favors Cu+ regeneration. This process suppresses the deactivation of CuGaS2 and maintains high performance. Both the activity and stability of photocatalytic CO2 reduction to produce CO over the CuGaS2/CdS hybrid were remarkably improved, which was approximately 4-fold higher than CuGaS2 and 3-fold higher than CdS in converting CO2 into CO. Our study demonstrates that even using the semiconductors prone to photo-corrosion, it is possible to obtain satisfactory catalytic activity and stability by designing efficient Z-scheme-charge-transfer-type photocatalysts.
Collapse
Affiliation(s)
- Shimiao Wu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Coughlan C, Ibáñez M, Dobrozhan O, Singh A, Cabot A, Ryan KM. Compound Copper Chalcogenide Nanocrystals. Chem Rev 2017; 117:5865-6109. [PMID: 28394585 DOI: 10.1021/acs.chemrev.6b00376] [Citation(s) in RCA: 359] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review captures the synthesis, assembly, properties, and applications of copper chalcogenide NCs, which have achieved significant research interest in the last decade due to their compositional and structural versatility. The outstanding functional properties of these materials stems from the relationship between their band structure and defect concentration, including charge carrier concentration and electronic conductivity character, which consequently affects their optoelectronic, optical, and plasmonic properties. This, combined with several metastable crystal phases and stoichiometries and the low energy of formation of defects, makes the reproducible synthesis of these materials, with tunable parameters, remarkable. Further to this, the review captures the progress of the hierarchical assembly of these NCs, which bridges the link between their discrete and collective properties. Their ubiquitous application set has cross-cut energy conversion (photovoltaics, photocatalysis, thermoelectrics), energy storage (lithium-ion batteries, hydrogen generation), emissive materials (plasmonics, LEDs, biolabelling), sensors (electrochemical, biochemical), biomedical devices (magnetic resonance imaging, X-ray computer tomography), and medical therapies (photochemothermal therapies, immunotherapy, radiotherapy, and drug delivery). The confluence of advances in the synthesis, assembly, and application of these NCs in the past decade has the potential to significantly impact society, both economically and environmentally.
Collapse
Affiliation(s)
- Claudia Coughlan
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick, Ireland
| | - Maria Ibáñez
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain
| | - Oleksandr Dobrozhan
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain.,Department of Electronics and Computing, Sumy State University , 2 Rymskogo-Korsakova st., 40007 Sumy, Ukraine
| | - Ajay Singh
- Materials Physics & Applications Division: Center for Integrated Nanotechnologies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Andreu Cabot
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Kevin M Ryan
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick, Ireland
| |
Collapse
|
8
|
Abstract
Recent progress in quantum dot (QD) based chemo- and biosensors for various applications is summarized.
Collapse
Affiliation(s)
- Lei Cui
- College of Science
- School of Environment and Architecture
- University of Shanghai for Science and Technology
- Shanghai 200293
- PR China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- East China University of Science and Technology (ECUST)
- Shanghai 200237
- PR China
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- East China University of Science and Technology (ECUST)
- Shanghai 200237
- PR China
| |
Collapse
|