1
|
Kurus NN, Dultsev FN, Golyshev VM, Nekrasov DV, Pyshnyi DV, Lomzov AA. A QCM-based rupture event scanning technique as a simple and reliable approach to study the kinetics of DNA duplex dissociation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3771-3777. [PMID: 32716423 DOI: 10.1039/d0ay00613k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rupture Event Scanning (REVS) is applied for the first time within an approach based on dynamic force spectroscopy. Using model DNA duplexes containing 20 pairs of oligonucleotides including those containing single mismatches, we demonstrated the possibility of reliable determination of the kinetic parameters of dissociation of biomolecular complexes: barrier positions, the rate constants of dissociation, and the lifetime of complexes. Within this approach, mechanical dissociation of DNA duplexes occurs according to a mechanism similar to unzipping. It is shown that this process takes place by overcoming a single energy barrier. In the case where a mismatch is located at the farthest duplex end from the QCM surface, a substantial decrease in the position of the barrier between the bound and unbound states is observed. We suppose that this is due to the formation of an initiation complex containing 3-4 pairs of bases, and this is sufficient for starting duplex unzipping.
Collapse
Affiliation(s)
- N N Kurus
- Rzhanov Institute of Semiconductor Physics SB, RAS, 630090, Russia.
| | | | | | | | | | | |
Collapse
|
2
|
Gupta A, Mishra A, Puri N. Peptide nucleic acids: Advanced tools for biomedical applications. J Biotechnol 2017; 259:148-159. [PMID: 28764969 PMCID: PMC7114329 DOI: 10.1016/j.jbiotec.2017.07.026] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/23/2017] [Accepted: 07/23/2017] [Indexed: 02/01/2023]
Abstract
Peptide Nucleic Acids − DNA/RNA analogues. Different Modifications on PNA backbone and their effects. Neutral backbone − remarkable hybridization properties. PNA based biosensors and their diverse biomedical applications. Potential antigene and antisense agents.
Peptide Nucleic Acids (PNAs) are the DNA/RNA analogues in which sugar-phosphate backbone is replaced by N-2-aminoethylglycine repeating units. PNA contains neutral backbone hence due to the absence of electrostatic repulsion, its hybridization shows remarkable stability towards complementary oligonucleotides. PNAs are highly resistant to cleavage by chemicals and enzymes due to the substrate specific nature of enzymes and therefore not degraded inside the cells. PNAs are emerging as new tools in the market due to their applications in antisense and antigene therapies by inhibiting translation and transcription respectively. Hence, several methods based on PNAs have been developed for designing various anticancer and antigene drugs, detection of mutations or modulation of PCR reactions. The duplex homopurine sequence of DNA may also be recognized by PNA, forming firm PNA/DNA/PNA triplex through strand invasion with a looped-out DNA strand. PNAs have also been found to replace DNA probes in varied investigative purposes. There are several disadvantages regarding cellular uptake of PNA, so modifications in PNA backbone or covalent coupling with cell penetrating peptides is necessary to improve its delivery inside the cells. In this review, hybridization properties along with potential applications of PNA in the field of diagnostics and pharmaceuticals are elaborated.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Chemistry, School of Basic and Applied Sciences, Galgotias University, Greater Noida, U.P., India.
| | - Anuradha Mishra
- School of Vocational Studies & Applied Sciences, Gautam Buddha University, Greater Noida, U.P., India
| | - Nidhi Puri
- Department of Applied Science & Humanities, I.T.S Engineering College, Greater Noida, U.P., India
| |
Collapse
|
3
|
QCM-based rupture force measurement as a tool to study DNA dehybridization and duplex stability. Anal Bioanal Chem 2016; 409:891-901. [DOI: 10.1007/s00216-016-0035-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/11/2016] [Accepted: 10/14/2016] [Indexed: 11/25/2022]
|
4
|
Barbero N, Cauteruccio S, Thakare P, Licandro E, Viscardi G, Visentin S. Is it possible to study the kinetic parameters of interaction between PNA and parallel and antiparallel DNA by stopped-flow fluorescence? JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:296-302. [PMID: 27611452 DOI: 10.1016/j.jphotobiol.2016.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 11/26/2022]
Abstract
Peptide nucleic acids (PNAs) are among the most interesting and versatile artificial structural mimics of nucleic acids and exhibit peculiar and important properties (i.e. high chemical stability, and a high resistance to cellular enzymes and nucleases). Despite their unnatural structure, they are able to recognize and bind DNA and RNA in a very high, specific and selective manner. One of the most popular, easy and reliable method to measure the stability of PNA-DNA hybrid systems is the melting temperature but the thermodynamic data are obtained using a big quantity of materials failing to provide information on the kinetics of the interaction. In the present work, the PNA decamer 6, with the TCACTAGATG sequence of nucleobases, and the corresponding fluorescent PNA-FITU (fluorescein isothiourea) decamer 8 were synthesized with standard manual Boc-based chemistry. The interaction of the PNA-FITU with parallel and antiparallel DNA has been studied by stopped-flow fluorescence, which is proposed as an alternative technique to obtain the kinetic parameters of the binding. The great advantage of using the stopped-flow technique is the possibility of studying the kinetics of the PNA-DNA duplex formation in a physiological environment. In particular, fluorescence stopped-flow technique has been exploited to compare the affinity of two PNA-DNA duplexes since it can discriminate between parallel and antiparallel DNA binding.
Collapse
Affiliation(s)
- N Barbero
- Department of Chemistry and NIS Interdepartmental Centre, University of Torino, Via P. Giuria 7, I-10125 Torino, Italy.
| | - S Cauteruccio
- Department of Chemistry, University of Milano, Via C. Golgi 19, I-20133 Milano, Italy.
| | - P Thakare
- Department of Chemistry, University of Milano, Via C. Golgi 19, I-20133 Milano, Italy
| | - E Licandro
- Department of Chemistry, University of Milano, Via C. Golgi 19, I-20133 Milano, Italy
| | - G Viscardi
- Department of Chemistry and NIS Interdepartmental Centre, University of Torino, Via P. Giuria 7, I-10125 Torino, Italy
| | - S Visentin
- Molecular Biotechnology and Health Sciences Department, University of Torino, Via Quarello 15, 10135 Torino, Italy
| |
Collapse
|
5
|
Dutta S, Armitage BA, Lyubchenko YL. Probing of miniPEGγ-PNA-DNA Hybrid Duplex Stability with AFM Force Spectroscopy. Biochemistry 2016; 55:1523-8. [PMID: 26898903 DOI: 10.1021/acs.biochem.5b01250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide nucleic acids (PNA) are synthetic polymers, the neutral peptide backbone of which provides elevated stability to PNA-PNA and PNA-DNA hybrid duplexes. It was demonstrated that incorporation of diethylene glycol (miniPEG) at the γ position of the peptide backbone increased the thermal stability of the hybrid duplexes (Sahu, B. et al. J. Org. Chem. 2011, 76, 5614-5627). Here, we applied atomic force microscopy (AFM) based single molecule force spectroscopy and dynamic force spectroscopy (DFS) to test the strength and stability of the hybrid 10 bp duplex. This hybrid duplex consisted of miniPEGγ-PNA and DNA of the same length (γ(MP)PNA-DNA), which we compared to a DNA duplex with a homologous sequence. AFM force spectroscopy data obtained at the same conditions showed that the γ(MP)PNA-DNA hybrid is more stable than the DNA counterpart, 65 ± 15 pN vs 47 ± 15 pN, respectively. The DFS measurements performed in a range of pulling speeds analyzed in the framework of the Bell-Evans approach yielded a dissociation constant, koff ≈ 0.030 ± 0.01 s⁻¹ for γ(MP)PNA-DNA hybrid duplex vs 0.375 ± 0.18 s⁻¹ for the DNA-DNA duplex suggesting that the hybrid duplex is much more stable. Correlating the high affinity of γ(MP)PNA-DNA to slow dissociation kinetics is consistent with prior bulk characterization by surface plasmon resonance. Given the growing interest in γ(MP)PNA as well as other synthetic DNA analogues, the use of single molecule experiments along with computational analysis of force spectroscopy data will provide direct characterization of various modifications as well as higher order structures such as triplexes and quadruplexes.
Collapse
Affiliation(s)
- Samrat Dutta
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska, United States
| | - Bruce A Armitage
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , Pittsburgh, Pennsylvania, United States
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska, United States
| |
Collapse
|
6
|
Li Q, Zhang T, Pan Y, Ciacchi LC, Xu B, Wei G. AFM-based force spectroscopy for bioimaging and biosensing. RSC Adv 2016. [DOI: 10.1039/c5ra22841g] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AFM-based force spectroscopy shows wide bio-related applications especially for bioimaging and biosensing.
Collapse
Affiliation(s)
- Qing Li
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| | - Tong Zhang
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Yangang Pan
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| | - Bingqian Xu
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Gang Wei
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| |
Collapse
|
7
|
Goux E, Lespinasse Q, Guieu V, Perrier S, Ravelet C, Fiore E, Peyrin E. Fluorescence anisotropy-based structure-switching aptamer assay using a peptide nucleic acid (PNA) probe. Methods 2015; 97:69-74. [PMID: 26455538 DOI: 10.1016/j.ymeth.2015.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/04/2015] [Accepted: 09/18/2015] [Indexed: 01/04/2023] Open
Abstract
This study describes for the first time the feasibility of using peptide nucleic acids (PNAs) as an alternative to the DNA probes in structure-switching aptamer fluorescence polarisation assays. The effects of experimental parameters such as the length of the PNA strand, the nature of dye and the buffer conditions on the assay performances are first explored using two different methodologies based on the competition between the PNA/aptamer hydribridisation and the target/aptamer complexation. D-ATP can be detected from 1 to 25 μM in a linear range and a detection limit (LOD) of 3 μM can be reached. For this target, this lowers by a factor >5 the LOD reported with conventional DNA-based fluorescent structure switching aptamer-based assays and by a factor 3 the LOD observed with non-competitive fluorescent sensing platform indicating the usefulness of the PNA-based approach.
Collapse
Affiliation(s)
- Emma Goux
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, UMR 5063 CNRS, ICMG FR 2607, Campus universitaire, Saint-Martin d'Hères, France
| | - Quentin Lespinasse
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, UMR 5063 CNRS, ICMG FR 2607, Campus universitaire, Saint-Martin d'Hères, France
| | - Valérie Guieu
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, UMR 5063 CNRS, ICMG FR 2607, Campus universitaire, Saint-Martin d'Hères, France.
| | - Sandrine Perrier
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, UMR 5063 CNRS, ICMG FR 2607, Campus universitaire, Saint-Martin d'Hères, France
| | - Corinne Ravelet
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, UMR 5063 CNRS, ICMG FR 2607, Campus universitaire, Saint-Martin d'Hères, France
| | - Emmanuelle Fiore
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, UMR 5063 CNRS, ICMG FR 2607, Campus universitaire, Saint-Martin d'Hères, France
| | - Eric Peyrin
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, UMR 5063 CNRS, ICMG FR 2607, Campus universitaire, Saint-Martin d'Hères, France.
| |
Collapse
|