1
|
Amadei F, Thoma J, Czajor J, Kimmle E, Yamamoto A, Abuillan W, Konovalov OV, Chushkin Y, Tanaka M. Ion-Mediated Cross-linking of Biopolymers Confined at Liquid/Liquid Interfaces Probed by In Situ High-Energy Grazing Incidence X-ray Photon Correlation Spectroscopy. J Phys Chem B 2020; 124:8937-8942. [PMID: 32876453 DOI: 10.1021/acs.jpcb.0c07056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As manifested in biological cell membranes, the confinement of chemical reactions at the 2D interfaces significantly improves the reaction efficacy. The interface between two liquid phases is used in various key processes in industries, such as in food emulsification and floatation. However, monitoring the changes in the mechanics and dynamics of molecules confined at the liquid/liquid interfaces still remains a scientific challenge because it is nontrivial to access the interface buried under a liquid phase. Herein, we report the in situ monitoring of the cross-linking of polyalginate mediated by Ca2+ ions at the oil/water interface by grazing incidence X-ray photon correlation spectroscopy (GIXPCS). We first optimized the reaction conditions with the aid of interfacial shear rheology and then performed GIXPCS using a high-energy synchrotron X-ray beam (22 keV) that guarantees sufficiently high transmittance through the oil phase. The intensity autocorrelation functions implied that the formation of a percolated network of polyalginate is accompanied by increasing relaxation time. Moreover, the relaxation rate scales linearly with the momentum transfer parallel to the interface, suggesting that the process is driven by hyperdiffusive propagation but not by Brownian diffusion. Our data indicated that high-energy GIXPCS has potential for in situ monitoring of changes in the dynamics of polymers confined between two liquid phases.
Collapse
Affiliation(s)
- Federico Amadei
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Judith Thoma
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Julian Czajor
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Esther Kimmle
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Akihisa Yamamoto
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Wasim Abuillan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Oleg V Konovalov
- European Synchrotron Radiation Facility, CS 40220, Grenoble 38043, France
| | - Yuriy Chushkin
- European Synchrotron Radiation Facility, CS 40220, Grenoble 38043, France
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany.,Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Chen Y, Rogers SA, Narayanan S, Harden JL, Leheny RL. Microscopic ergodicity breaking governs the emergence and evolution of elasticity in glass-forming nanoclay suspensions. Phys Rev E 2020; 102:042619. [PMID: 33212706 DOI: 10.1103/physreve.102.042619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/10/2020] [Indexed: 11/07/2022]
Abstract
We report a study combining x-ray photon correlation spectroscopy (XPCS) with in situ rheology to investigate the microscopic dynamics and mechanical properties of aqueous suspensions of the synthetic hectorite clay Laponite, which is composed of charged, nanometer-scale, disk-shaped particles. The suspensions, with particle concentrations ranging from 3.25 to 3.75 wt %, evolve over time from a fluid to a soft glass that displays aging behavior. The XPCS measurements characterize the localization of the particles during the formation and aging of the soft-glass state. The fraction of localized particles, f_{0}, increases rapidly during the early formation stage and grows more slowly during subsequent aging, while the characteristic localization length r_{loc} steadily decreases. Despite the strongly varying rates of aging at different concentrations, both f_{0} and r_{loc} scale with the elastic shear modulus G^{'} in a manner independent of concentration. During the later aging stage, the scaling between r_{loc} and G^{'} agrees quantitatively with a prediction of naive mode coupling theory. Breakdown of agreement with the theory during the early formation stage indicates the prevalence of dynamic heterogeneity, suggesting the soft solid forms through precursors of dynamically localized clusters.
Collapse
Affiliation(s)
- Yihao Chen
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Simon A Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Suresh Narayanan
- X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - James L Harden
- Department of Physics & CAMaR, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
3
|
Nigro V, Ruzicka B, Ruta B, Zontone F, Bertoldo M, Buratti E, Angelini R. Relaxation Dynamics, Softness, and Fragility of Microgels with Interpenetrated Polymer Networks. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Valentina Nigro
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), sede Sapienza, Pz.le Aldo Moro 5, I-00185 Roma, Italy
- Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Roma, Italy
| | - Barbara Ruzicka
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), sede Sapienza, Pz.le Aldo Moro 5, I-00185 Roma, Italy
- Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Roma, Italy
| | - Beatrice Ruta
- France Univ Lyon, Universitè Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69100 Villeurbanne, France
- ESRF The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| | - Federico Zontone
- ESRF The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| | - Monica Bertoldo
- Istituto per la Sintesi Organica e la Fotoreattività del Consiglio Nazionale delle Ricerche (ISOF-CNR), via P. Gobetti
101, 40129 Bologna, Italy
| | - Elena Buratti
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), sede Sapienza, Pz.le Aldo Moro 5, I-00185 Roma, Italy
| | - Roberta Angelini
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), sede Sapienza, Pz.le Aldo Moro 5, I-00185 Roma, Italy
- Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Roma, Italy
| |
Collapse
|
4
|
Rao A, Divoux T, McKinley GH, Hart AJ. Shear melting and recovery of crosslinkable cellulose nanocrystal-polymer gels. SOFT MATTER 2019; 15:4401-4412. [PMID: 31095139 DOI: 10.1039/c8sm02647e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cellulose nanocrystals (CNC) are naturally-derived nanostructures of growing importance for the production of composites having attractive mechanical properties, and offer improved sustainability over purely petroleum-based alternatives. Fabrication of CNC composites typically involves extrusion of CNC suspensions and gels in a variety of solvents, in the presence of additives such as polymers and curing agents. Most studies so far have focused on aqueous CNC gels, yet the behavior of CNC-polymer gels in organic solvents is important to their wider processability. Here, we study the rheological behavior of composite polymer-CNC gels in dimethylformamide, which include additives for both UV and thermal crosslinking. Using rheometry coupled with in situ infrared spectroscopy, we show that under external shear, CNC-polymer gels display progressive and irreversible failure of the hydrogen bond network that is responsible for their pronounced elastic properties. In the absence of cross-linking additives, the polymer-CNC gels show an instantaneous but partial recovery of their viscoelasticity upon cessation of flow, whereas, the presence of additives allows the gels to recover over much longer timescale via van der Waals interactions. By exploring a broad range of shear history and CNC concentrations, we construct master curves for the temporal evolution of the viscoelastic properties of the polymer-CNC gels, illustrating universality of the observed dynamics with respect to gel composition and flow conditions. We find that polymer-CNC composite gels display a number of the distinctive features of colloidal glasses and, strikingly, that their response to the flow conditions encountered during processing can be tuned by chemical additives. These findings have implications for processing of dense CNC-polymer composites in solvent casting, 3D printing, and other manufacturing techniques.
Collapse
Affiliation(s)
- Abhinav Rao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
5
|
Li Q, Peng X, McKenna GB. Long-term aging behaviors in a model soft colloidal system. SOFT MATTER 2017; 13:1396-1404. [PMID: 28120996 DOI: 10.1039/c6sm02408d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Colloidal and molecular systems share similar behaviors near to the glass transition volume fraction or temperature. Here, aging behaviors after volume fraction up-jump (induced by performing temperature down-jumps) conditions for a PS-PNIPAM/AA soft colloidal system were investigated using light scattering (diffusing wave spectroscopy, DWS). Both aging responses and equilibrium dynamics were investigated. For the aging responses, long-term experiments (100 000 s) were performed, and both equilibrium and non-equilibrium behaviors of the system were obtained. In the equilibrium state, as effective volume fraction increases (or temperature decreases), the colloidal dispersion displays a transition from the liquid to a glassy state. The equilibrium α-relaxation dynamics strongly depend on both the effective volume fraction and the initial mass concentration for the studied colloidal systems. Compared with prior results from our lab [X. Di, X. Peng and G. B. McKenna, J. Chem. Phys., 2014, 140, 054903], the effective volume fractions investigated spanned a wider range, to deeper into the glassy domain. The results show that the α-relaxation time τα of the samples aged into equilibrium deviate from the classical Vogel-Fulcher-Tammann (VFT)-type expectations and the super-Arrhenius signature disappears above the glass transition volume fraction. The non-equilibrium aging response shows that the time for the structural evolution into equilibrium and the α-relaxation time are decoupled. The DWS investigation of the aging behavior after different volume fraction jumps reveals a different non-equilibrium or aging behavior for the considered colloidal systems compared with either molecular glasses or the macroscopic rheology of a similar colloidal dispersions.
Collapse
Affiliation(s)
- Qi Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA.
| | - Xiaoguang Peng
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA.
| | - Gregory B McKenna
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA.
| |
Collapse
|