1
|
Govardhane S, Shende P. Phthalocyanine-based glucose-responsive nanocochleates for dynamic prevention of β-cell damage in diabetes. J Liposome Res 2024; 34:44-59. [PMID: 37171277 DOI: 10.1080/08982104.2023.2209642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/14/2023] [Indexed: 05/13/2023]
Abstract
Phthalocyanine is a blue-colored macrocyclic compound with excellent anti-oxidant and lipid-peroxidation abilities due to its intermolecular π-π stacking structure. Antioxidants inhibit intracellular reactive oxygen species formation and decrease oxidation defense ability of the enzymes in diabetes management. The present study aimed to fabricate concanavalin A conjugated phthalocyanine-loaded cochleates (Formulation PhConA) as a glucose-sensitive lipidic system and estimate its efficacy in streptozotocin-induced male Sprague Dawley diabetic rats for 28 days. Thin-film hydration and trapping methods were used in the preparation of liposomes and cochleates, respectively, whereas the surface was modified for concanavalin A conjugation using EDAC: NHS (1:1). Formulation PhConA with rod-shaped structures showed particle size of 415.7 ± 0.46 nm, PdI value of 0.435 ± 0.09, encapsulation efficiency of 85.64 ± 0.34%, and 84.55 ± 0.29% release of phthalocyanine for 56 h. The circular dichroism study displayed a slight deviation after the conjugation effect of concanavalin A to cochleates. The in-vivo studies of the formulation PhConA improved the blood glucose levels along with defensive effect on the liver to overcome the hyperlipidemic effect. The rigid structure of cochleates prolongs the drug elimination from systemic circulation and extends its effect for a longer duration by decreasing the blood glucose level. Thus, the glucose-sensitive formulation PhConA showed significant improvement in diabetic rats within the period of 28 days by improving the oxidative defense and protecting the pancreatic β-cells.
Collapse
Affiliation(s)
- Sharayu Govardhane
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Mumbai, India
| |
Collapse
|
2
|
Kristensen S, Hassan K, Andersen NS, Steiniger F, Kuntsche J. Feasibility of the preparation of cochleate suspensions from naturally derived phosphatidylserines. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1241368. [PMID: 37745179 PMCID: PMC10512065 DOI: 10.3389/fmedt.2023.1241368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Cochleates are cylindrical particles composed of dehydrated phospholipid bilayers. They are typically prepared by addition of calcium ions to vesicles composed of negatively charged phospholipids such as phosphatidylserines (PS). Due to their high physical and chemical stability, they provide an interesting alternative over other lipid-based drug formulations for example to improve oral bioavailability or to obtain a parenteral sustained-release formulation. Methods In the present study, the feasibility to prepare cochleate suspensions from soy lecithin-derived phosphatidylserines (SPS) was investigated and compared to the "gold standard" dioleoyl-phosphatidylserine (DOPS) cochleates. The SPS lipids covered a large range of purities between 53 and >96% and computer-controlled mixing was evaluated for the preparation of the cochleate suspensions. Electron microscopic investigations were combined with small-angle x-ray diffraction (SAXD) and Laurdan generalized polarization (GP) analysis to characterize particle structure and lipid organization. Results Despite some differences in particle morphology, cochleate suspensions with similar internal lipid structure as DOPS cochleates could be prepared from SPS with high headgroup purity (≥96%). Suspensions prepared from SPS with lower purity still revealed a remarkably high degree of lipid dehydration and well-organized lamellar structure. However, the particle shape was less defined, and the typical cochleate cylinders could only be detected in suspensions prepared with higher amount of calcium ions. Finally, the study proves the feasibility to prepare suspensions of cochleates or cochleate-like particles directly from a calcium salt of soy-PS by dialysis.
Collapse
Affiliation(s)
- Søren Kristensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Khadeija Hassan
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | | | - Frank Steiniger
- Center for Electron Microscopy, Jena University Hospital, Jena, Germany
| | - Judith Kuntsche
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
3
|
Cochleate drug delivery systems: An approach to their characterization. Int J Pharm 2021; 610:121225. [PMID: 34710542 DOI: 10.1016/j.ijpharm.2021.121225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/02/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
Cochleate systems formed from phospholipids have very useful properties as drug delivery systems with sustained release capabilities, which are able to improve bioavailability and efficacy, reduce toxicity and increase the shelf-life of encapsulated molecules. These nanometric or micrometric structures are usually obtained after interaction of negatively charged liposomes with a positively charged bridging agent. Many different methods are now available to prepare cochleates and there are also numerous techniques that can be used to characterize them, some of which can be easily applied while others require more sophisticated equipment or analysis. The present review describes the important features of this drug delivery system; including their structural properties and potential applications, as well as a brief account of methods for their preparation and an extensive description of the techniques used for their characterization. This information could guide formulators in their choice of methods of characterization that would be best suited to their needs in terms of time, precision and technological difficulty.
Collapse
|
4
|
|
5
|
Shanmugam T, Joshi N, Kaviratna A, Ahamad N, Bhatia E, Banerjee R. Aerosol Delivery of Paclitaxel-Containing Self-Assembled Nanocochleates for Treating Pulmonary Metastasis: An Approach Supporting Pulmonary Mechanics. ACS Biomater Sci Eng 2021; 7:144-156. [PMID: 33346632 DOI: 10.1021/acsbiomaterials.0c01126] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Paclitaxel (PTX) is a potent anticancer agent, which is clinically administered by infusion for treating pulmonary metastasis of different cancers. Systemic injection of PTX is promising in treating pulmonary metastasis of various cancers but simultaneously leads to many severe complications in the body. In this study, we have demonstrated a noninvasive approach for delivering PTX to deep pulmonary tissues via an inhalable phospholipid-based nanocochleate platform and showed its potential in treating pulmonary metastasis of melanoma cancer. Nanocochleates have been previously explored for oral delivery of anticancer drugs; their application for aerosol-based administration has not been accomplished in the literature thus far. Our results showed that the PTX-carrying aerosol nanocochleates (PTX-CPTs) possessed excellent pulmonary surfactant action characterized by high surface activity and encouraging in vitro terminal airway patency when compared to the marketed Taxol formulation, which is known to contain a high amount of Cremophore EL. We observed under in vitro twin-impinger analysis that the PTX-CPT had a high tendency to get deposited in stage II (alveolar region of lungs), indicating the capability of CPT to reach the deep alveolar region. Further, while exposed to the human lung adenocarcinoma cell line (A549), the PTX-CPT showed excellent cytotoxicity mediated by enhanced cellular uptake via energy-dependent endocytosis. Aerosol-based administration of PTX-CPT in a pulmonary metastatic murine melanoma model (B16F10) resulted in significant (p < 0.05) tumor growth inhibition when compared to an intravenous dose of Taxol. Inhibition of tumor growth in aerosol-based PTX-CPT-treated animals was evident by the significant (p < 0.05) reduction in numbers of tumor nodules and percent metastasis area covered by melanoma cells in the lung when compared to other treatment groups. Overall, our finding suggests that PTX can be safely administered in the form of an aerosol using a newly developed CPT system, which serves a dual purpose as both a drug delivery carrier and a pulmonary surfactant in treating pulmonary metastasis.
Collapse
Affiliation(s)
- Thanigaivel Shanmugam
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Nitin Joshi
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Anubhav Kaviratna
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Nadim Ahamad
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Eshant Bhatia
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Rinti Banerjee
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| |
Collapse
|
6
|
Alginate-coating of artemisinin-loaded cochleates results in better control over gastro-intestinal release for effective oral delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Surface activity, foam properties and aggregation behavior of mixtures of short-chain fluorocarbon and hydrocarbon surfactants. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.055] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Ijaz H, Qureshi J, Tulain UR, Iqbal F, Danish Z, Fayyaz A, Sethi A. Lipid particulate drug delivery systems: a review. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2018. [DOI: 10.1680/jbibn.16.00039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hira Ijaz
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Junaid Qureshi
- Department of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Furqan Iqbal
- Department of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Zeeshan Danish
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Ahad Fayyaz
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Ayesha Sethi
- College of Pharmacy, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
9
|
Wang P, Chen C, Guo H, Zhang H, Yang Z, Ren F. Casein gel particles as novel soft Pickering stabilizers: The emulsifying property and packing behaviour at the oil-water interface. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.11.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Direct imaging and computational cryo-electron microscopy of ribbons and nanotubes. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Preziosi V, Perazzo A, Tomaiuolo G, Pipich V, Danino D, Paduano L, Guido S. Flow-induced nanostructuring of gelled emulsions. SOFT MATTER 2017; 13:5696-5703. [PMID: 28744531 DOI: 10.1039/c7sm00646b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although the phase behavior of emulsions has been thoroughly investigated, the effect of flow on emulsion morphology, which is relevant for many applications, is far from being fully elucidated. Here, we investigate an emulsion based on two common nonionic surfactants in a range of water concentration where complex and diverse microstructures are found at rest, such as multilamellar and bicontinuous phases. In spite of such complexity, once subjected to shear flow, all the emulsions investigated are characterized by thinning filaments which eventually break up into a concentrated suspension of micro-sized water-based droplets dispersed in a continuous oil phase. The so-formed droplets tend to align in string-like structures. The emulsions exhibit a yield stress, whose value can be estimated by the plug-core velocity profiles in pressure-driven capillary flow, thus providing evidence of weakly attractive interdroplet interactions. The latter are consistent with droplet clustering and percolation observed at rest. These results can also be relevant to the flow behavior of other liquid-liquid systems, such as polymer blends, where the flow-induced microstructure is under debate as well.
Collapse
Affiliation(s)
- Valentina Preziosi
- Department of Chemical, Materials and Production Engineering, University of Napoli Federico II, 80125 Napoli, Italy.
| | | | | | | | | | | | | |
Collapse
|
12
|
Dispersion and stabilization of cochleate nanoparticles. Eur J Pharm Biopharm 2017; 117:270-275. [DOI: 10.1016/j.ejpb.2017.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/28/2017] [Accepted: 04/27/2017] [Indexed: 11/19/2022]
|
13
|
Calcium and protons affect the interaction of neurotransmitters and anesthetics with anionic lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2215-2222. [DOI: 10.1016/j.bbamem.2016.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 01/09/2023]
|