1
|
Flaquer-Galmés R, Campos D, Méndez V. Intermittent random walks under stochastic resetting. Phys Rev E 2024; 109:034103. [PMID: 38632743 DOI: 10.1103/physreve.109.034103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/06/2024] [Indexed: 04/19/2024]
Abstract
We analyze a one-dimensional intermittent random walk on an unbounded domain in the presence of stochastic resetting. In this process, the walker alternates between local intensive search, diffusion, and rapid ballistic relocations in which it does not react to the target. We demonstrate that Poissonian resetting leads to the existence of a non-equilibrium steady state. We calculate the distribution of the first arrival time to a target along with its mean and show the existence of an optimal reset rate. In particular, we prove that the initial condition of the walker, i.e., either starting diffusely or relocating, can significantly affect the long-time properties of the search process. Moreover, we demonstrate the presence of distinct parameter regimes for the global optimization of the mean first arrival time when ballistic and diffusive movements are in direct competition.
Collapse
Affiliation(s)
- Rosa Flaquer-Galmés
- Grupo de Física Estadística, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Daniel Campos
- Grupo de Física Estadística, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Vicenç Méndez
- Grupo de Física Estadística, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
2
|
Rusciano F, Pastore R, Greco F. Universal Evolution of Fickian Non-Gaussian Diffusion in Two- and Three-Dimensional Glass-Forming Liquids. Int J Mol Sci 2023; 24:ijms24097871. [PMID: 37175578 PMCID: PMC10177888 DOI: 10.3390/ijms24097871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
Recent works show that glass-forming liquids display Fickian non-Gaussian Diffusion, with non-Gaussian displacement distributions persisting even at very long times, when linearity in the mean square displacement (Fickianity) has already been attained. Such non-Gaussian deviations temporarily exhibit distinctive exponential tails, with a decay length λ growing in time as a power-law. We herein carefully examine data from four different glass-forming systems with isotropic interactions, both in two and three dimensions, namely, three numerical models of molecular liquids and one experimentally investigated colloidal suspension. Drawing on the identification of a proper time range for reliable exponential fits, we find that a scaling law λ(t)∝tα, with α≃1/3, holds for all considered systems, independently from dimensionality. We further show that, for each system, data at different temperatures/concentration can be collapsed onto a master-curve, identifying a characteristic time for the disappearance of exponential tails and the recovery of Gaussianity. We find that such characteristic time is always related through a power-law to the onset time of Fickianity. The present findings suggest that FnGD in glass-formers may be characterized by a "universal" evolution of the distribution tails, independent from system dimensionality, at least for liquids with isotropic potential.
Collapse
Affiliation(s)
- Francesco Rusciano
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Raffaele Pastore
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Francesco Greco
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| |
Collapse
|
3
|
Rusciano F, Pastore R, Greco F. Fickian Non-Gaussian Diffusion in Glass-Forming Liquids. PHYSICAL REVIEW LETTERS 2022; 128:168001. [PMID: 35522520 DOI: 10.1103/physrevlett.128.168001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/09/2022] [Indexed: 05/23/2023]
Abstract
Fickian yet non-Gaussian diffusion (FnGD), a most intriguing open issue in soft matter, is generically associated with some dynamical and/or structural heterogeneity of the environment. Here we investigate the features of FnGD in glass-forming liquids, the epitome of dynamical heterogeneity, drawing on experiments on hard-sphere colloidal suspensions and simulations of a simple model of molecular liquid. We demonstrate that FnGD strengthens on approaching the glass transition, by identifying distinct timescales for Fickianity, τ_{F}, and for restoring of Gaussianity, τ_{G}>τ_{F}, as well as their associated length scales, ξ_{F} and ξ_{G}. We find τ_{G}∝τ_{F}^{γ} with γ≃1.8 for both systems. In the deep FnGD regime, the displacement distributions display exponential tails. We show that, in simulations, the time-dependent decay lengths l(t) at different temperatures all collapse onto a power-law master curve [l(t)/(ξ_{G})]∝(t/τ_{G})^{α}, with α=0.33. A similar collapse, if less sharp, is also found in experiments, seemingly with the same exponent α. We further discuss the connections of the timescales and length scales characterizing FnGD with structural relaxation and dynamic heterogeneity.
Collapse
Affiliation(s)
- Francesco Rusciano
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, Napoli 80125, Italy
| | - Raffaele Pastore
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, Napoli 80125, Italy
| | - Francesco Greco
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, Napoli 80125, Italy
| |
Collapse
|
4
|
Pastore R, Giavazzi F, Greco F, Cerbino R. Multiscale heterogeneous dynamics in two-dimensional glassy colloids. J Chem Phys 2022; 156:164906. [DOI: 10.1063/5.0087590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
On approaching the glass transition, a dense colloid exhibits a dramatic slowdown with minute structural changes. Most microscopy experiments directly follow the motion of individual particles in real space, whereas scattering experiments typically probe the collective dynamics in reciprocal space, at variable wavevector q. Multiscale studies of glassy dynamics are experimentally demanding and thus seldom performed. By using two-dimensional hard-sphere colloids at various area fractions φ, we show here that Differential Dynamic Microscopy (DDM) can be effectively used to measure the collective dynamics of a glassy colloid in a range of q within a single experiment. As φ is increased, the single decay of the intermediate scattering functions is progressively replaced by a more complex relaxation that we fit to a sum of two stretched-exponential decays. The slowest process, corresponding to the long-time particle escapes from caging, has a characteristic time τs = 1/(DLq2 ) with diffusion coefficient DL ∼ (φc −φ)2.8 , and φc ≈ 0.81. The fast process exhibits, instead, a non-Brownian scaling of the characteristic time τf(q) and a relative amplitude a(q) that monotonically increases with q. Despite the non-Brownian nature of τf(q), we succeed in estimating the short-time diffusion coefficient Dcage, whose φ-dependence is practically negligible compared to the one of DL. Finally, we extend DDM to measure the q-dependent dynamical susceptibility χ4(q,t), a powerful yet hard-to-access multiscale indicator of dynamical heterogeneities. Our results show that DDM is a convenient tool to study the dynamics of colloidal glasses over a broad range of time and length-scales.
Collapse
Affiliation(s)
- Raffaele Pastore
- Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, Italy
| | | | | | - Roberto Cerbino
- Physics, Universität Wien Computergestützte Physik und Physik der Weichen Materie, Austria
| |
Collapse
|
5
|
Pastore R, Ciarlo A, Pesce G, Sasso A, Greco F. A model-system of Fickian yet non-Gaussian diffusion: light patterns in place of complex matter. SOFT MATTER 2022; 18:351-364. [PMID: 34888591 DOI: 10.1039/d1sm01133b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fickian yet non-Gaussian Diffusion (FnGD), widely observed for colloidal particles in a variety of complex and biological fluids, emerges as a most intriguing open issue in Soft Matter. To fully monitor FnGD and advance its understanding, recording many trajectories over a large time range is crucial, which makes experiments challenging. Here we exploit a recently introduced experimental model of finely tunable FnGD: a quasi-2d system of Brownian beads in water moving in a heterogeneous energy landscape generated by a static and spatially random optical force field (speckle pattern). By performing experiments at different optical power, we succeed in monitoring the evolution as well as the precursors of FnGD. Fickian scaling of the mean square displacement is always attained after a subdiffusive regime while the displacement distributions keep on being non-Gaussian, which allows for measuring a characteristic length- and time-scale for the onset of FnGD, ξf and tf. We find that ξf stays constant, whereas tf grows as the inverse of the long-time diffusion coefficient tf ∝ D-1 for increasing the optical power. Deviations from the standard Gaussian shape of the displacement distribution are neatly characterized on a broad range of times, focusing on the excess probability at small displacements and on the decay-length of the distinctive exponential tails. Such deviations are fully built in the subdiffusive regime and, at the FnGD onset, grow with the optical power. As time goes on, the small-displacement probability narrows and the exponential tails progressively break up, with a tendency to recover the Gaussian behaviour. Overall, both subdiffusion and FnGD become more marked and persistent on increasing the optical power, suggesting a strict relation between these two regimes. As clearly demonstrated by our results, the adopted model-system represents a privileged stage for in-depth study of FnGD and opens the way to unveil the nature of this phenomenon through finely tuned and well-controlled experiments.
Collapse
Affiliation(s)
- Raffaele Pastore
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli, Italy.
| | - Antonio Ciarlo
- Department of Physics E. Pancini, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Giuseppe Pesce
- Department of Physics E. Pancini, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Antonio Sasso
- Department of Physics E. Pancini, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Francesco Greco
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli, Italy.
| |
Collapse
|
6
|
Pastore R, Kikutsuji T, Rusciano F, Matubayasi N, Kim K, Greco F. Breakdown of the Stokes-Einstein relation in supercooled liquids: A cage-jump perspective. J Chem Phys 2021; 155:114503. [PMID: 34551555 DOI: 10.1063/5.0059622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The breakdown of the Stokes-Einstein relation in supercooled liquids, which is the increase in the ratio τατD between the two macroscopic times for structural relaxation and diffusion on decreasing the temperature, is commonly ascribed to dynamic heterogeneities, but a clear-cut microscopic interpretation is still lacking. Here, we tackle this issue exploiting the single-particle cage-jump framework to analyze molecular dynamics simulations of soft disk assemblies and supercooled water. We find that τατD∝⟨tp⟩⟨tc⟩, where ⟨tp⟩ and ⟨tc⟩ are the cage-jump times characterizing slow and fast particles, respectively. We further clarify that this scaling does not arise from a simple term-by-term proportionality; rather, the relations τα∝⟨tp⟩⟨ΔrJ 2⟩ and τD∝⟨tc⟩⟨ΔrJ 2⟩ effectively connect the macroscopic and microscopic timescales, with the mean square jump length ⟨ΔrJ 2⟩ shrinking on cooling. Our work provides a microscopic perspective on the Stokes-Einstein breakdown and generalizes previous results on lattice models to the case of more realistic glass-formers.
Collapse
Affiliation(s)
- Raffaele Pastore
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Napoli 80125, Italy
| | - Takuma Kikutsuji
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Francesco Rusciano
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Napoli 80125, Italy
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kang Kim
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Francesco Greco
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Napoli 80125, Italy
| |
Collapse
|
7
|
Porpora G, Rusciano F, Guida V, Greco F, Pastore R. Understanding charged vesicle suspensions as Wigner glasses: dynamical aspects. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:104001. [PMID: 33246318 DOI: 10.1088/1361-648x/abce6f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Suspensions of charged vesicles in water with added salt are widespread in nature and industrial production. Here we investigate, via Brownian dynamics simulations, a model that grasps the key features of these systems, with bidisperse colloidal beads interacting via a hard-core and an electrostatic double layer potential. Our goal is to focus on a set of interaction parameters that is not generic but measured in recent experiments, and relevant for a class of consumer products, such as liquid fabric softeners. On increasing the volume fraction in a range relevant to real formulation, we show that the dynamics become progressively slower and heterogeneous, displaying the typical signatures of an approaching glass transition. On lowering the salt concentration, which corresponds to increasing the strength and range of the electrostatic repulsion, the emergence of glassy dynamics becomes significantly steeper, and, remarkably, occurs at volume fractions well below the hard-sphere glass transition. The volume fraction dependence of the structural relaxation time at different salt concentration is well described through a functional law inspired by a recently proposed model (Krausser et al 2015 Proc. Natl Acad. Sci. USA 112 13762). According to our results, the investigated system may be thought of as a Wigner glass, i.e. a low-density glassy state stabilized by long-range repulsive interactions. Overall, our study suggests that glassy dynamics plays an important role in controlling the stability of these suspensions.
Collapse
Affiliation(s)
- G Porpora
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - F Rusciano
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - V Guida
- The Procter and Gamble Company, Brussels Innovation Center, 1853 Strombeek Bever Temselaan 100, 1853 Grimbergen, Belgium
| | - F Greco
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - R Pastore
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| |
Collapse
|
8
|
Nigro V, Ruzicka B, Ruta B, Zontone F, Bertoldo M, Buratti E, Angelini R. Relaxation Dynamics, Softness, and Fragility of Microgels with Interpenetrated Polymer Networks. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Valentina Nigro
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), sede Sapienza, Pz.le Aldo Moro 5, I-00185 Roma, Italy
- Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Roma, Italy
| | - Barbara Ruzicka
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), sede Sapienza, Pz.le Aldo Moro 5, I-00185 Roma, Italy
- Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Roma, Italy
| | - Beatrice Ruta
- France Univ Lyon, Universitè Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69100 Villeurbanne, France
- ESRF The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| | - Federico Zontone
- ESRF The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| | - Monica Bertoldo
- Istituto per la Sintesi Organica e la Fotoreattività del Consiglio Nazionale delle Ricerche (ISOF-CNR), via P. Gobetti
101, 40129 Bologna, Italy
| | - Elena Buratti
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), sede Sapienza, Pz.le Aldo Moro 5, I-00185 Roma, Italy
| | - Roberta Angelini
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), sede Sapienza, Pz.le Aldo Moro 5, I-00185 Roma, Italy
- Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Roma, Italy
| |
Collapse
|
9
|
Yang X, Tong H, Wang WH, Chen K. Emergence and percolation of rigid domains during the colloidal glass transition. Phys Rev E 2019; 99:062610. [PMID: 31330594 DOI: 10.1103/physreve.99.062610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Indexed: 06/10/2023]
Abstract
Using video microscopy, we measure local spatial constraints in disordered binary colloidal samples, ranging from dilute fluids to jammed glasses, and probe their spatial and temporal correlations to local dynamics during the glass transition. We observe the emergence of significant correlations between constraints and local dynamics within the Lindemann criterion, which coincides with the onset of glassy dynamics in supercooled liquids. Rigid domains in fluids are identified based on local constraints and demonstrate a percolation transition near the glass transition, accompanied by the emergence of dynamical heterogeneities. Our results show that spatial constraint instead of the geometry of amorphous structures is the key that connects the complex spatial-temporal correlations in disordered materials.
Collapse
Affiliation(s)
- Xiunan Yang
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hua Tong
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Wei-Hua Wang
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
10
|
Zheng Z, Li F, Liu J, Pastore R, Raos G, Wu Y, Zhang L. Effects of chemically heterogeneous nanoparticles on polymer dynamics: insights from molecular dynamics simulations. SOFT MATTER 2018; 14:1219-1226. [PMID: 29350725 DOI: 10.1039/c7sm02414b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The dispersion of solid nanoparticles within polymeric materials is widely used to enhance their performance. Many scientific and technological aspects of the resulting polymer nanocomposites have been studied, but the role of the structural and chemical heterogeneity of the nanoparticles has just started to be appreciated. For example, simulations of polymer films on planar heterogeneous surfaces revealed unexpected, non-monotonic activation energy to diffusion on varying the surface composition. Motivated by these intriguing results, here we simulate via molecular dynamics a different, fully three-dimensional system, in which the heterogeneous nanoparticles are incorporated in a polymer melt. The nanoparticles are roughly spherical assemblies of strongly and weakly attractive sites, in fractions of f and 1 - f, respectively. We show that the polymer diffusion is still characterized by a non-monotonic dependence of the activation energy on f. The comparison with the case of homogeneous nanoparticles clarifies that the effect of the heterogeneity increases on approaching the polymer glass transition.
Collapse
Affiliation(s)
- Zijian Zheng
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | | | | | | | | | | | | |
Collapse
|