1
|
Chen X, Huang H, Wu Q, Xue F, Zhao Z, Liu J, Duan H, Chen H. Triggering "signal-on" photoelectrochemical responses by heterojunction transition for selective detection of copper(II) based on Pd/MoS 2@g-C 3N 4 nanocomposites. Anal Chim Acta 2023; 1283:341940. [PMID: 37977776 DOI: 10.1016/j.aca.2023.341940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Controlling the concentration of copper(II) in aquatic systems is of importance for human health. Numerous traditional technologies to detect Cu2+ may encounter with limitations, such as high signal background and complicated operation. Herein, a highly selective photoelectrochemical (PEC) sensor is proposed for the "signal-on" detection of Cu2+ employing g-C3N4 nanosheets with MoS2 and Pd quantum dots deposited (Pd/MoS2@g-C3N4). Pd/MoS2@g-C3N4 could present the enhanced photocurrents of specific responses to Cu2+ under light irradiation. MoS2 quantum dots on the sensor are agglomerated into MoS2 bulk during sensing Cu2+, forming an efficient Z-scheme heterojunction. The heterojunction transition induced photoelectrons transferring from the bulk MoS2 to g-C3N4, resulting in "signal-on" PEC responses. Such Z-scheme heterojunction has conquered the traditional heterojunction towards "signal-on" mechanism, that was further verified by band structure measurements and DMPO spin trapping ESR analysis. Photocurrent intensities increased gradually with the addition of incremental Cu2+ concentrations, achieving a detection limit of 0.21 μM and a broad linear interval range from 1 μM to 1 mM with high selectivity and stability. This work may open a new door towards the in situ construction of g-C3N4-based Z-scheme heterojunctions for the signal-on PEC sensing platform, providing wide applications in environmental monitoring and food safety.
Collapse
Affiliation(s)
- Xi Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Haicai Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Qingping Wu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Fei Xue
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ziming Zhao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jingqiu Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Haoyu Duan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Houyang Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
2
|
Choudhari U, Ramgir N, Late D, Jagtap S, Debnath A, Muthe K. Selective detection of Cd (II) and Cr (VI) ions using rGO functionalized metal doped SnO2 nanocomposites. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
3
|
Liu Z, Wang R, Xue Q, Chang C, Liu Y, He L. Highly efficient detection of Cd(Ⅱ) ions in water by graphitic carbon nitride and tin dioxide nanoparticles modified glassy carbon electrode. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Xia Y, Ma Y, Wu Y, Yi Y, Lin H, Zhu G. Free-electrodeposited anodic stripping voltammetry sensing of Cu(II) based on Ti 3C 2T x MXene/carbon black. Mikrochim Acta 2021; 188:377. [PMID: 34643816 DOI: 10.1007/s00604-021-05042-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/27/2021] [Indexed: 01/31/2023]
Abstract
A proof-of-principle concept for free-electrodeposited anodic stripping voltammetry (ASV) sensing of Cu2+ is proposed by using Ti3C2Tx MXene/carbon black (Ti3C2Tx@CB) nanohybrids as electrode materials. Owing to the high adsorption and reduction capability of Ti3C2Tx towards Cu2+, Ti3C2Tx MXene enables Cu2+ to be immobilized and self-reduced directly to form Cu0 on the Ti3C2Tx@CB electrode surface. As a result an oxidation peak current appears from the re-oxidation of Cu0 via differential pulse voltammetry. Carbon black (CB) was introduced to prevent Ti3C2Tx Mxene aggregation and improve the related electron transfer as well as enhance their surface area. After optimizing various conditions, a considerable low limit of detection (4.6 nM) and a wide linear range (0.01-15.0 μM) for Cu2+ were achieved at the working potential from - 0.3 V to 0.0 V (vs SCE). Relative standard deviation (RSD) of eight individual Ti3C2Tx@CB electrodes is 3.72%, and the recoveries from tap water sample and lake water sample were in the ranges of 97.0-108% and 104-107%, respectively.
Collapse
Affiliation(s)
- Yixuan Xia
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yuzhi Ma
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yuntao Wu
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yinhui Yi
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, People's Republic of China.,Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, Fuzhou, People's Republic of China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, Changsha, Hunan, 410081, People's Republic of China
| | - Huiyu Lin
- Fujian Key Laboratory of Functional Marine Sensing Materials, Ocean College, Minjiang University, Fuzhou, People's Republic of China
| | - Gangbing Zhu
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, People's Republic of China. .,Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, Fuzhou, People's Republic of China. .,Fujian Key Laboratory of Functional Marine Sensing Materials, Ocean College, Minjiang University, Fuzhou, People's Republic of China.
| |
Collapse
|
5
|
Tang X, Fan T, Wang C, Zhang H. Halogen Functionalization in the 2D Material Flatland: Strategies, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005640. [PMID: 33783132 DOI: 10.1002/smll.202005640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Given the electronegativity and bonding environment of halogen elements, halogenation (i.e., fluorination, chlorination, bromination, and iodination) serves as a versatile strategy for chemical modifications of materials. The combination of halogens and 2D materials has triggered extensive interests since the first report on graphene fluorination in 2008. Subsequently, scholars consistently conduct pre-, in-process, or posthalogenation modifications of emerging 2D materials to achieve desired properties and broad device applications. They also continuously explore the role of halogens in 2D material functionalization. The multiple advantages introduced by halogen decoration make 2D materials outstanding from each subclass. In this review, an overall retrospect is provided on the research advances in the area of 2D material halogenation, including experimental halogenation strategies, halogen-triggered novel physics and properties, and advanced applications across the studied objects. Future research directions in this area are also proposed.
Collapse
Affiliation(s)
- Xian Tang
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
| | - Touwen Fan
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
| | - Cong Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Han Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
6
|
Yin J, Chu G, Wang Y, Zhai H, Wang B, Sun X, Guo Y, Zhang Y. Novel Three‐dimensional Sensor for Rapid Detection of Pb(II) and Cd(II) in Edible Mushrooms. ELECTROANAL 2021. [DOI: 10.1002/elan.202060560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jiaqi Yin
- School of Agricultural Engineering and Food Science Shandong University of Technology No.12 Zhangzhou Road Zibo 255049 Shandong Province China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Trace ability No. 12 Zhangzhou Road Zibo 255049 Shandong Province China
- Zibo City Key Laboratory of Agricultural Product Safety Trace ability
| | - Guanglei Chu
- School of Agricultural Engineering and Food Science Shandong University of Technology No.12 Zhangzhou Road Zibo 255049 Shandong Province China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Trace ability No. 12 Zhangzhou Road Zibo 255049 Shandong Province China
- Zibo City Key Laboratory of Agricultural Product Safety Trace ability
| | - Yue Wang
- School of Agricultural Engineering and Food Science Shandong University of Technology No.12 Zhangzhou Road Zibo 255049 Shandong Province China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Trace ability No. 12 Zhangzhou Road Zibo 255049 Shandong Province China
- Zibo City Key Laboratory of Agricultural Product Safety Trace ability
| | - Hongguo Zhai
- School of Agricultural Engineering and Food Science Shandong University of Technology No.12 Zhangzhou Road Zibo 255049 Shandong Province China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Trace ability No. 12 Zhangzhou Road Zibo 255049 Shandong Province China
- Zibo City Key Laboratory of Agricultural Product Safety Trace ability
| | - Bao Wang
- School of Agricultural Engineering and Food Science Shandong University of Technology No.12 Zhangzhou Road Zibo 255049 Shandong Province China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Trace ability No. 12 Zhangzhou Road Zibo 255049 Shandong Province China
- Zibo City Key Laboratory of Agricultural Product Safety Trace ability
| | - Xia Sun
- School of Agricultural Engineering and Food Science Shandong University of Technology No.12 Zhangzhou Road Zibo 255049 Shandong Province China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Trace ability No. 12 Zhangzhou Road Zibo 255049 Shandong Province China
- Zibo City Key Laboratory of Agricultural Product Safety Trace ability
| | - Yemin Guo
- School of Agricultural Engineering and Food Science Shandong University of Technology No.12 Zhangzhou Road Zibo 255049 Shandong Province China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Trace ability No. 12 Zhangzhou Road Zibo 255049 Shandong Province China
- Zibo City Key Laboratory of Agricultural Product Safety Trace ability
| | - Yanyan Zhang
- School of Agricultural Engineering and Food Science Shandong University of Technology No.12 Zhangzhou Road Zibo 255049 Shandong Province China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Trace ability No. 12 Zhangzhou Road Zibo 255049 Shandong Province China
- Zibo City Key Laboratory of Agricultural Product Safety Trace ability
- Shandong Xicheng Agricultural Machinery Science and Technology Co. Ltd. Dezhou 253600 Shandong Province China
| |
Collapse
|
7
|
Metal and metal oxide nanoparticles in the voltammetric detection of heavy metals: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116014] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Saleh TA, Fadillah G. Recent trends in the design of chemical sensors based on graphene–metal oxide nanocomposites for the analysis of toxic species and biomolecules. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115660] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Li Y, Yuan M, Khan AJ, Wang L, Zhang F. Peptide-gold nanocluster synthesis and intracellular Hg2+ sensing. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Pathania S, Narang RK, Rawal RK. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur J Med Chem 2019; 180:486-508. [PMID: 31330449 DOI: 10.1016/j.ejmech.2019.07.043] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
From many decades, S-heterocycles have maintained their status as an important part and core of FDA approved drugs and medicinally active compounds. With exhaustive exploration of nitrogen heterocycles in medicinal chemistry, researchers have shifted their interest towards other heterocycles, especially, S-heterocycles. Thus several attempts have been made to synthesize a variety of new sulphur containing compounds with high medicinal value and low toxicity profile, in comparison to previous N-heterocycles. Till today, S-heterocycle containing compounds have been largely reported as anticancer, antidiabetic, antimicrobial, antihypertension, antivral, antinflammatory etc. In this review, the authors have tried to provide a critical analysis of synthesis and medicinal attributes of sulphur containing heterocycles such as thiirane, thiophene, thiazole, thiopyran, thiazolidine etc reported within last five years to emphasize the significance and usefulness of these S-heterocycles in the drug discovery process.
Collapse
Affiliation(s)
- Shelly Pathania
- Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga, 142001, Punjab, India; Research Scholar, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Raj Kumar Narang
- Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga, 142001, Punjab, India
| | - Ravindra K Rawal
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, 133207, Haryana, India.
| |
Collapse
|
11
|
Shi Y, Xu H, Gu Z, Wang C, Du Y. Sensitive detection of caffeic acid with trifurcate PtCu nanocrystals modified glassy carbon electrode. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.01.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Zuo Y, Xu J, Zhu X, Duan X, Lu L, Yu Y. Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: a review. Mikrochim Acta 2019; 186:171. [PMID: 30756239 DOI: 10.1007/s00604-019-3248-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
Abstract
This review (with 155 refs.) summarizes the progress made in the past few years in the field of electrochemical sensors based on graphene-derived materials for the determination of heavy metal ions. Following an introduction of this field and a discussion of the various kinds of modified graphenes including graphene oxide and reduced graphene oxide, the review covers graphene based electrodes modified (or doped) with (a) heteroatoms, (b) metal nanoparticles, (c) metal oxides, (d) small organic molecules, (e) polymers, and (f) ternary nanocomposites. Tables are provided that afford an overview of representative methods and materials for fabricating electrochemical sensors. Furthermore, sensing mechanisms are discussed. A concluding section presents new perspectives, opportunities and current challenges. Graphical Abstract Schematic illustration of electrochemical sensor for heavy metal ion sensing based on heteroatom-doped graphene, metal-modified graphene, metal-oxide-modified graphene, organically modified graphene, polymer-modified graphene, and ternary graphene based nanocomposites.
Collapse
Affiliation(s)
- Yinxiu Zuo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China.,Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang, Nanchang, 330045, China
| | - Jingkun Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China.,School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Xiaofei Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Xuemin Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China.
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang, Nanchang, 330045, China.
| | - Yongfang Yu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang, Nanchang, 330045, China
| |
Collapse
|
13
|
Zhang Y, Ren T, He J, Tian H, Jin B. Acute heavy metal toxicity test based on bacteria-hydrogel. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Two-dimensional nanomaterial based sensors for heavy metal ions. Mikrochim Acta 2018; 185:478. [DOI: 10.1007/s00604-018-3005-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/09/2018] [Indexed: 01/28/2023]
|