1
|
Singh A, Tanwar M, Singh TP, Sharma S, Sharma P. An escape from ESKAPE pathogens: A comprehensive review on current and emerging therapeutics against antibiotic resistance. Int J Biol Macromol 2024; 279:135253. [PMID: 39244118 DOI: 10.1016/j.ijbiomac.2024.135253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The rise of antimicrobial resistance has positioned ESKAPE pathogens as a serious global health threat, primarily due to the limitations and frequent failures of current treatment options. This growing risk has spurred the scientific community to seek innovative antibiotic therapies and improved oversight strategies. This review aims to provide a comprehensive overview of the origins and resistance mechanisms of ESKAPE pathogens, while also exploring next-generation treatment strategies for these infections. In addition, it will address both traditional and novel approaches to combating antibiotic resistance, offering insights into potential new therapeutic avenues. Emerging research underscores the urgency of developing new antimicrobial agents and strategies to overcome resistance, highlighting the need for novel drug classes and combination therapies. Advances in genomic technologies and a deeper understanding of microbial pathogenesis are crucial in identifying effective treatments. Integrating precision medicine and personalized approaches could enhance therapeutic efficacy. The review also emphasizes the importance of global collaboration in surveillance and stewardship, as well as policy reforms, enhanced diagnostic tools, and public awareness initiatives, to address resistance on a worldwide scale.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mansi Tanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - T P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
2
|
Eş I, Thakur A, Mousavi Khaneghah A, Foged C, de la Torre LG. Engineering aspects of lipid-based delivery systems: In vivo gene delivery, safety criteria, and translation strategies. Biotechnol Adv 2024; 72:108342. [PMID: 38518964 DOI: 10.1016/j.biotechadv.2024.108342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Defects in the genome cause genetic diseases and can be treated with gene therapy. Due to the limitations encountered in gene delivery, lipid-based supramolecular colloidal materials have emerged as promising gene carrier systems. In their non-functionalized form, lipid nanoparticles often demonstrate lower transgene expression efficiency, leading to suboptimal therapeutic outcomes, specifically through reduced percentages of cells expressing the transgene. Due to chemically active substituents, the engineering of delivery systems for genetic drugs with specific chemical ligands steps forward as an innovative strategy to tackle the drawbacks and enhance their therapeutic efficacy. Despite intense investigations into functionalization strategies, the clinical outcome of such therapies still needs to be improved. Here, we highlight and comprehensively review engineering aspects for functionalizing lipid-based delivery systems and their therapeutic efficacy for developing novel genetic cargoes to provide a full snapshot of the translation from the bench to the clinics. We outline existing challenges in the delivery and internalization processes and narrate recent advances in the functionalization of lipid-based delivery systems for nucleic acids to enhance their therapeutic efficacy and safety. Moreover, we address clinical trials using these vectors to expand their clinical use and principal safety concerns.
Collapse
Affiliation(s)
- Ismail Eş
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Headington, Oxford OX3 7DQ, UK.
| | - Aneesh Thakur
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Amin Mousavi Khaneghah
- Faculty of Biotechnologies (BioTech), ITMO University 191002, 9 Lomonosova Street, Saint Petersburg, Russia.
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lucimara Gaziola de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Encapsulating melittin from animal venom by finely tuned charge compensation with polymer carriers. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
4
|
Doltchinkova V, Kitanova M, Nikolov R, Stoyanova-Ivanova A, Petkov O, Dikova Y, Vitkova V. Erythrocyte Membrane Biophysical Changes Mediated by Pooled Immunoglobulin G and Hematin: Electrokinetic and Lipid Peroxidation Studies. MEMBRANES 2023; 13:281. [PMID: 36984668 PMCID: PMC10056742 DOI: 10.3390/membranes13030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/04/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Pooled Immunoglobulin G (IgG), hematin and the membrane-disruptive amphipathic peptide melittin have received attention as powerful biomacromolecules for biomedical and pharmacology applications. Their action on surface properties, oxidation status and epifluorescence properties measured in vitro provide useful information about the functional activity of upper biomacromolecules in erythrocytes in vivo. The hemolysis of erythrocyte membranes, as well as changes in hematocrit and the morphology of erythrocytes, was investigated here via fluorescence microscopy using FITC-concanavalin A binding to cells. The effect of melittin on the membrane capacitance and resistance of model lipid bilayers was probed via electrochemical impedance spectroscopy. Lipid bilayer capacitance was higher in the presence of 0.10 g/L melittin compared to that in the control, which is likely related to bilayer thinning and alterations of the dielectric permittivity of melittin-treated membranes. The biomolecule interactions with red blood cells were probed in physiological media in which the surface of erythrocyte membranes was negatively charged. Surface parameters of erythrocytes are reported upon IgG/hematin and IgG/melittin treatment. Pooled IgG in the presence of melittin, preincubated IgG/hematin preparations promoted a significant decrease in the electrokinetic potential of erythrocytes (Rh-positive). A malondialdehyde (MDA) assay revealed a high rate of lipid peroxidation in erythrocytes treated with IgG/hematin or IgG/melittin preparations. This finding might be a result of pooled IgG interactions with the hematin molecule and the subsequent conformational changes in the protein molecule altering the electrokinetic properties of the erythrocyte membrane related to the Rh group type of erythrocytes. The pooled IgG and hematin are reported to have important consequences for the biophysical understanding of the immunopathological mechanisms of inflammatory, autoimmune and antibody-mediated pathological processes.
Collapse
Affiliation(s)
- Virjinia Doltchinkova
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria
| | - Meglena Kitanova
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria
| | - Rumen Nikolov
- Faculty of Mechanical Engineering, Technical University of Sofia, 8 Kl. Ohridski blvd., 1784 Sofia, Bulgaria
| | - Angelina Stoyanova-Ivanova
- Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee blvd., 1784 Sofia, Bulgaria
| | - Ognyan Petkov
- Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee blvd., 1784 Sofia, Bulgaria
| | - Yoana Dikova
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria
| | - Victoria Vitkova
- Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee blvd., 1784 Sofia, Bulgaria
| |
Collapse
|
5
|
Frias M, Cejas J, Rosa A, Disalvo E. Relevance of water in biological membranes. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Zhukouskaya H, Blanco PM, Černochová Z, Čtveráčková L, Staňo R, Pavlova E, Vetrík M, Černoch P, Filipová M, Šlouf M, Štěpánek M, Hrubý M, Košovan P, Pánek J. Anionically Functionalized Glycogen Encapsulates Melittin by Multivalent Interaction. Biomacromolecules 2022; 23:3371-3382. [PMID: 35768319 DOI: 10.1021/acs.biomac.2c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed acid-functionalized glycogen conjugates as supramolecular carriers for efficient encapsulation and inhibition of a model cationic peptide melittin─the main component of honeybee venom. For this purpose, we synthesized and characterized a set of glycogens, functionalized to various degrees by several different acid groups. These conjugates encapsulate melittin up to a certain threshold amount, beyond which they precipitate. Computer simulations showed that sufficiently functionalized conjugates electrostatically attract melittin, resulting in its efficient encapsulation in a broad pH range around the physiological pH. Hemolytic assays confirmed in vitro that the effective inhibition of melittin's hemolytic activity occurs for highly functionalized samples, whereas no inhibition is observed when using low-functionalized conjugates. It can be concluded that functional glycogens are promising carriers for cationic molecular cargos or antidotes against animal venoms under conditions, in which suitable properties such as biodegradability and biocompatibility are crucial.
Collapse
Affiliation(s)
- Hanna Zhukouskaya
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Pablo M Blanco
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Zulfiya Černochová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Lucie Čtveráčková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Roman Staňo
- Faculty of Physics, University of Vienna, Kolingasse 14-16, Vienna 1090, Austria
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Miroslav Vetrík
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Peter Černoch
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Marcela Filipová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Jiří Pánek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| |
Collapse
|
7
|
Disalvo A, Frias MA. Surface Characterization of Lipid Biomimetic Systems. MEMBRANES 2021; 11:membranes11110821. [PMID: 34832050 PMCID: PMC8621788 DOI: 10.3390/membranes11110821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022]
Abstract
Zeta potential and dipole potential measures are direct operational methodologies to determine the adsorption, insertion and penetration of ions, amphipathic and neutral compounds into the membranes of cells and model systems. From these results, the contribution of charged and dipole groups can be deduced. However, although each method may give apparent affinity or binding constants, care should be taken to interpret them in terms of physical meaning because they are not independent properties. On the base of a recent model in which the lipid bilayer is considered as composed by two interphase regions at each side of the hydrocarbon core, this review describes how dipole potential and zeta potential are correlated due to water reorganization. From this analysis, considering that in a cell the interphase region the membrane extends to the cell interior or overlaps with the interphase region of another supramolecular structure, the correlation of dipole and electrostatic forces can be taken as responsible of the propagation of perturbations between membrane and cytoplasm and vice versa. Thus, this picture gives the membrane a responsive character in addition to that of a selective permeability barrier when integrated to a complex system.
Collapse
|
8
|
Zeta potential beyond materials science: Applications to bacterial systems and to the development of novel antimicrobials. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183597. [PMID: 33652005 DOI: 10.1016/j.bbamem.2021.183597] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/17/2023]
Abstract
This review summarizes the theory of zeta potential (ZP) and the most relevant data about how it has been used for studying bacteria. We have especially focused on the discovery and characterization of novel antimicrobial compounds. The ZP technique may be considered an indirect tool to estimate the surface potential of bacteria, a physical characteristic that is key to maintaining optimal cell function. For this reason, targeting the bacterial surface is of paramount interest in the development of new antimicrobials. Surface-acting agents have been found to display a remarkable bactericidal effect and have simultaneously revealed a low tendency to trigger resistance. Changes in the bacterial surface as a result of various processes can also be followed by ZP measurements. However, due to the complexity of the bacterial surface, some considerations regarding the assessment of ZP must first be taken into account. Evidence on the application of ZP measurements to the characterization of bacteria and biofilm formation is presented next. We finally discuss the feasibility of using the ZP technique to assess antimicrobial-induced changes in the bacterial surface. Among these changes are those related to the interaction of the agent with different components of the cell envelope, membrane permeabilization, and loss of viability.
Collapse
|
9
|
Rosa AS, Disalvo EA, Frias MA. Water Behavior at the Phase Transition of Phospholipid Matrixes Assessed by FTIR Spectroscopy. J Phys Chem B 2020; 124:6236-6244. [DOI: 10.1021/acs.jpcb.0c03719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. S. Rosa
- Applied Biophysics and Food Research Center, National University of Santiago del Estero (CIBAAL-UNSE-CONICET), G4200 Santiago del Estero, Argentina
| | - E. A. Disalvo
- Applied Biophysics and Food Research Center, National University of Santiago del Estero (CIBAAL-UNSE-CONICET), G4200 Santiago del Estero, Argentina
| | - M. A. Frias
- Applied Biophysics and Food Research Center, National University of Santiago del Estero (CIBAAL-UNSE-CONICET), G4200 Santiago del Estero, Argentina
| |
Collapse
|
10
|
Cutro AC, Castelli MV, López SN, Rosales MA, Hollmann A, Rodriguez SA. Chemical composition of Schinus areira essential oil and antimicrobial action against Staphylococcus aureus. Nat Prod Res 2019; 35:2931-2936. [DOI: 10.1080/14786419.2019.1675065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Andrea C. Cutro
- Laboratorio de Compuestos Bioactivos, Centro de Investigación de Biofísica Aplicada y Alimentos (CIBAAL), CONICET-UNSE, Santiago del Estero, Argentina
- Facultad de Ciencias Médicas, UNSE, Santiago del Estero, Argentina
- CONICET, Santiago del Estero, Argentina
| | - M. Victoria Castelli
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Silvia N. López
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Manuel A. Rosales
- Facultad de Agronomía y Agroindustrias, UNSE, Santiago del Estero, Argentina
| | - Axel Hollmann
- Laboratorio de Compuestos Bioactivos, Centro de Investigación de Biofísica Aplicada y Alimentos (CIBAAL), CONICET-UNSE, Santiago del Estero, Argentina
- Laboratorio de Microbiología Molecular, DCyT, Universidad Nacional de Quilmes, Bernal, Argentina
- CONICET, Santiago del Estero, Argentina
| | - Sergio A. Rodriguez
- Facultad de Agronomía y Agroindustrias, UNSE, Santiago del Estero, Argentina
- CONICET, Santiago del Estero, Argentina
| |
Collapse
|
11
|
Two/three-dimensional interfacial properties of the novel peptide as a selective destroyer of biomembrane. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Ruiz Mostacero N, Castelli MV, Cutró AC, Hollmann A, Batista JM, Furlan M, Valles J, Fulgueira CL, López SN. Antibacterial activity of prenylated benzopyrans from Peperomia obtusifolia (Piperaceae). Nat Prod Res 2019; 35:1706-1710. [PMID: 31198050 DOI: 10.1080/14786419.2019.1628751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Peperomia obtusifolia is a herbaceous perennial plant native to the Americas reported as a traditional medicine to treat snake bites and as a skin cleanser. The bioassay-guided fractionation of crude extracts from aerial parts of P. obtusifolia against a panel of clinically important fungi and bacteria, showed that hexane and dichloromethane extracts demonstrated selective bacterial inhibition, allowing the isolation of the known compounds peperobtusin A (1), and 3,4-dihydro-5-hydroxy-2,7-dimethyl-8-(3"-methyl-2"-butenyl)-2-(4'-methyl-1',3'-pentadienyl)-2H-1-benzopyran-6-carboxylic acid (2) from dichloromethane extract. Compound 2 was active against Gram-positive bacteria including community acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) isolates and an Enterococcus faecalis vancomycin-resistant strain, with minimal inhibitory concentration (MIC) values of 4 μg/mL (10.8 μM) and 8 μg/mL (21.6 μM) respectively. The interaction of compound 2 with the bacterial membrane was demonstrated by means of Zeta potential experiments on S. aureus, then confirming the membrane damage by fluorescent microscopy experiments.
Collapse
Affiliation(s)
- Nathalie Ruiz Mostacero
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Victoria Castelli
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Andrea Carmen Cutró
- Laboratory of Bioactive Compounds, CIBAAL - National University of Santiago del Estero and CONICET, Santiago del Estero, Argentina
| | - Axel Hollmann
- Laboratory of Bioactive Compounds, CIBAAL - National University of Santiago del Estero and CONICET, Santiago del Estero, Argentina.,Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Argentina
| | - João Marcos Batista
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP-ICT) R. Talim, São Jose dos Campos, SP, Brazil
| | - Maysa Furlan
- NuBBE (Nucleus of Bioassays, Biosynthesis and Ecophysiology of Natural Products) - Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Julieta Valles
- CEMAR - Secretaría de Salud Pública, Municipalidad de Rosario, Rosario, SF, Argentina
| | - Cecilia Luisa Fulgueira
- Micología - CEREMIC, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, SF, Argentina
| | - Silvia Noelí López
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|