1
|
Bushati A, Zheng K, Haxhari R, Zmarzlak T, Meng Y, Kim T, Nitodas S. Kinetics of the decomposition of reactive black 5 on carbon nanostructured adsorbents. ENVIRONMENTAL ADVANCES 2024; 17:100590. [DOI: 10.1016/j.envadv.2024.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Chau JHF, Lai CW, Leo BF, Juan JC, Lee KM, Qian X, Badruddin IA, Zai J. Direct Z-scheme Cu 2O/WO 3/TiO 2 nanocomposite as a potential supercapacitor electrode and an effective visible-light-driven photocatalyst. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121332. [PMID: 38850906 DOI: 10.1016/j.jenvman.2024.121332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/22/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
This paper presents the synthesis of visible light-responsive ternary nanocomposites composed of cuprous oxide (Cu2O), tungsten trioxide (WO3), and titanium dioxide (TiO2) with varying weight percentages (wt.%) of the Cu2O. The resulting Cu2O/WO3/TiO2 (CWT) nanocomposites exhibited band gap energy ranging from 2.35 to 2.90 eV. Electrochemical and photoelectrochemical (PEC) studies confirmed a reduced recombination rate of photoexcited charge carriers in the CWT nanocomposites, facilitated by a direct Z-scheme heterojunction. The 0.50CWT nanocomposite demonstrated superior photodegradation activity (2.29 × 10-2 min-1) against Reactive Black 5 (RB5) dye under visible light activation. Furthermore, the 0.50CWT nanocomposite exhibited excellent stability with 80.51% RB5 photodegradation retention after five cycles. The 0.50CWT electrode achieved a maximum specific capacitance of 66.32 F/g at 10 mA/g current density, with a capacitance retention of 95.17% after 1000 charge-discharge cycles, affirming its stable and efficient supercapacitor performance. This was supported by well-defined peaks in cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) curves, indicating pseudocapacitive properties.
Collapse
Affiliation(s)
- Jenny Hui Foong Chau
- Nanotechnology & Catalysis Research Center (NANOCAT), Institute for Advanced Studies, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Center (NANOCAT), Institute for Advanced Studies, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Bey Fen Leo
- Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Joon Ching Juan
- Nanotechnology & Catalysis Research Center (NANOCAT), Institute for Advanced Studies, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kian Mun Lee
- Nanotechnology & Catalysis Research Center (NANOCAT), Institute for Advanced Studies, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Xuefeng Qian
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Jiantao Zai
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Tolkou AK, Tsoutsa EK, Kyzas GZ, Katsoyiannis IA. Sustainable use of low-cost adsorbents prepared from waste fruit peels for the removal of selected reactive and basic dyes found in wastewaters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14662-14689. [PMID: 38280170 PMCID: PMC10884073 DOI: 10.1007/s11356-024-31868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/29/2023] [Indexed: 01/29/2024]
Abstract
Agricultural wastes are potential sustainable adsorbents since they are available in large quantities, are low-cost, and may require little or no treatment, in some cases. In this study, several fruit peels, such as banana, orange, and pomegranate, were collected from local markets and prepared by a simple and eco-friendly method and used as natural adsorbents for the removal of both anionic (Reactive Red 120 (RR120), Reactive Black 5 (RB5), Remazol Brilliant Blue R (RBBR)) and cationic Methylene Blue (MB) dyes found in wastewaters. Many industries, such as leather and textiles, can release huge amounts of synthetic dyes into the wastewater during dyeing processes. These are one of the most important pollutants of water pollution as they cause enormous damage to the water body and also affect the health of organisms due to their toxicity and carcinogenicity. The search for a sustainable and at the same time efficient material for the removal of a wide variety of dyes is the innovation of this work. These peels were prepared by washing, drying, grinding, and finally sieving, under natural sustainable conditions. Porosometry (BET analysis), FTIR, SEM/EDS, and XRD techniques were used to characterize the fruit peels before and after the adsorption process. Factors affecting the adsorption of dyes (adsorbent dosage, pH solution, initial concentration of dyes, contact time, and temperature) were investigated. According to the results, in terms of the effectiveness of fruit peels as (natural) adsorbent materials, for anionic dyes, 5.0-6.0 g/L of banana or orange dry peels was sufficient to remove near or even more than 90% anionic dyes at pH 2.0, and 4.0 g/L was sufficient to remove 98% of cationic MB dye at pH 9.0. Similar amount of pomegranate peels had lower efficiency for anionic dyes (50-70%), while cationic MB was still efficiently removed (98%) at pH 9.0. Moreover, the adsorption process in all cases was found to better fit to pseudo-second-order model, in comparison to pseudo-first-order model. According to isotherms, Freundlich model fitted better in some cases to the equilibrium data, while the Langmuir model in others. Finally, this study demonstrates the viability of reusing the banana, orange, and pomegranate peel adsorbents for eight, four, and five cycles, showing a gradual reduction of around 50% of their effectiveness.
Collapse
Affiliation(s)
- Athanasia K Tolkou
- Department of Chemistry, International Hellenic University, 65404, Kavala, Greece
| | - Eleftheria K Tsoutsa
- Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, 65404, Kavala, Greece
| | - Ioannis A Katsoyiannis
- Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
4
|
Samal PP, Swain J, Qaiyum MA, Ghosh A, Mandal D, Dey B, Dey S. Green synthesis of MnO 2-embedded Rauvolfia tetraphylla leaves (MnO 2@RTL) for crystal violet dye removal and as an antibacterial agent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5457-5472. [PMID: 38123767 DOI: 10.1007/s11356-023-31442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The application of green synthesized nanocomposites for the prevention of environmental pollution is increasing nowadays. Here, a green composite has been synthesized by embedding MnO2 on Rauvolfia tetraphylla leaves using its leaf extract hereinafter termed as MnO2@RTL, and demonstrated for crystal violet (CV) dye removal from simulated and real wastewater. The surface properties of the material were determined by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), and Brunauer-Emmet-Teller (BET) surface area, pHZPC, and zeta potential. The material exhibits a remarkable adsorption capacity of 61.162 mg/g at 328 K and pH 7. The adsorption was best fitted with Pseudo-second-order kinetic (R2 = 0.998) and a combination of Langmuir and Freundlich isotherm model (R2 = 0.994-0.999). The thermodynamic study revealed spontaneous (ΔG values = - 2.988 to - 4.978 kJ/mol) and endothermic (ΔH values = 6.830 to 11.018 kJ/mol) adsorption. After adsorption, 80% regeneration occurred with 50% methanol, and recycled up to five times. Advantageously, the material was able to remove CV dye in the presence of coexistent ions and from industrial wastewater, confirming field applicability. The adsorption capacity of the material is superior to previously reported materials. The standard deviation and relative standard deviations have been evaluated to be 0.000422-0.000667 and 0.473-0.749%, which suggests the reliability of the experiments. The exhausted material, after recycling, was pyrolyzed to overcome the disposal problem. It was established as a secondary adsorbent with 73% efficiency which makes the material win-win. The material showed antibacterial properties with Staphylococcus aureus bacteria with a zone of inhibition 5 mm.
Collapse
Affiliation(s)
- Priyanka Priyadarsini Samal
- Department of Chemistry, Environment Protection Laboratory, Central University of Jharkhand, Ranchi, 835205, India
| | - Jashminirani Swain
- Department of Chemistry, Environment Protection Laboratory, Central University of Jharkhand, Ranchi, 835205, India
| | - Md Atif Qaiyum
- Department of Chemistry, Environment Protection Laboratory, Central University of Jharkhand, Ranchi, 835205, India
| | - Adrija Ghosh
- Department of Polymer Science & Technology, University of Calcutta, Kolkata, 700009, West Bengal, India
| | - Debashmita Mandal
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, 700106, West Bengal, India
| | - Banashree Dey
- Department of Chemistry, The Graduate School College for Women, Jamshedpur, 831001, India
| | - Soumen Dey
- Department of Chemistry, Environment Protection Laboratory, Central University of Jharkhand, Ranchi, 835205, India.
| |
Collapse
|
5
|
Baikousi M, Gantzoudi A, Gioti C, Moschovas D, Giannakas AE, Avgeropoulos A, Salmas CE, Karakassides MA. Hydrogen Sulfide Removal via Sorption Process on Activated Carbon-Metal Oxide Composites Derived from Different Biomass Sources. Molecules 2023; 28:7418. [PMID: 37959837 PMCID: PMC10650035 DOI: 10.3390/molecules28217418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Biomass exploitation is a global trend due to the circular economy and the environmentally friendly spirit. Numerous applications are now based on the use of biomass-derived products. Hydrogen sulfide (H2S) is a highly toxic and environmentally hazardous gas which is emitted from various processes. Thus, the efficient removal of this toxic hazardous gas following cost-effective processes is an essential requirement. In this study, we present the synthesis and characterization of biomass-derived activated carbon/zinc oxide (ZnO@AC) composites from different biomass sources as potential candidates for H2S sorption. The synthesis involved a facile method for activated carbon production via pyrolysis and chemical activation of biomass precursors (spent coffee, Aloe-Vera waste leaves, and corncob). Activated carbon production was followed by the incorporation of zinc oxide nanoparticles into the porous carbon matrix using a simple melt impregnation method. The synthesized ZnO@AC composites were characterized using X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and nitrogen porosimetry. The H2S removal performance of the ZnO@AC composites was evaluated through sorption experiments using a handmade apparatus. Our findings demonstrate that the Aloe-Vera-, spent coffee-, and corncob-derived composites exhibit superior H2S sorption capacity up to 106 mgH2S/gads., 66 mgH2S/gads., and 47 mgH2S/gads., respectively.
Collapse
Affiliation(s)
- Maria Baikousi
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (M.B.); (A.G.); (C.G.); (D.M.); (A.A.)
| | - Anna Gantzoudi
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (M.B.); (A.G.); (C.G.); (D.M.); (A.A.)
| | - Christina Gioti
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (M.B.); (A.G.); (C.G.); (D.M.); (A.A.)
| | - Dimitrios Moschovas
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (M.B.); (A.G.); (C.G.); (D.M.); (A.A.)
| | - Aris E. Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece;
| | - Apostolos Avgeropoulos
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (M.B.); (A.G.); (C.G.); (D.M.); (A.A.)
| | - Constantinos E. Salmas
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (M.B.); (A.G.); (C.G.); (D.M.); (A.A.)
| | - Michael A. Karakassides
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (M.B.); (A.G.); (C.G.); (D.M.); (A.A.)
| |
Collapse
|
6
|
Erkurt FE, Mert A. Eco-friendly oxidation of a reactive textile dye by CaO 2: effects of specific independent parameters. ENVIRONMENTAL TECHNOLOGY 2023; 44:3294-3315. [PMID: 37376879 DOI: 10.1080/09593330.2023.2229943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Textile wastewater containing dyes poses significant risks to the environment. Advanced oxidation processes (AOPs) effectively eliminate dyes by converting them into harmless substances. However, AOPs have drawbacks such as sludge formation, metal toxicity, and high cost. As an alternative to AOPs, calcium peroxide (CaO2) offers an eco-friendly and potent oxidant for dye removal. Unlike certain AOPs that generate sludge, CaO2 can be directly employed without resulting in sludge formation. This study examines the use of CaO2 for oxidizing Reactive Black 5 (RB5) in textile wastewater without any activator. Various independent factors-pH, CaO2 dosage, temperature, and certain anions-were investigated for their influence on the oxidation process. The effects of these factors on dye oxidation were analyzed using the Multiple Linear Regression Method (MLR). CaO2 dosage was determined to be the most influential parameter for RB5 oxidation, while the optimal pH for oxidation with CaO2 was found to be 10. The study determined that 0.5 g of CaO2 achieved approximately 99% efficiency in oxidizing 100 mg/L of RB5. Additionally, the study revealed that the oxidation process is endothermic, with an activation energy (Ea) and standard enthalpy (ΔH°) for RB5 oxidation by CaO2 determined as 31.135 kJ mol-1 and 110.4 kJ mol-1, respectively. The presence of anions decreased RB5 oxidation, with decreasing effectiveness observed in the order of PO43-, SO42-, HCO3-, Cl-, CO32-, and NO3-. Overall, this research highlights CaO2 as an effective, easy-to-use, eco-friendly, and cost-efficient method for removing RB5 from textile wastewater.
Collapse
Affiliation(s)
- F Elcin Erkurt
- Department of Environmental Engineering, Cukurova University, Adana, Turkey
| | - Aslı Mert
- Department of Environmental Engineering, Cukurova University, Adana, Turkey
| |
Collapse
|
7
|
Tolkou AK, Mitropoulos AC, Kyzas GZ. Removal of anthraquinone dye from wastewaters by hybrid modified activated carbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27550-9. [PMID: 37195607 DOI: 10.1007/s11356-023-27550-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/06/2023] [Indexed: 05/18/2023]
Abstract
Dyes are among the main environmental pollutants, due to the high amount of discharge of wastewater, lost in the dyeing process, without any further treatment. Anthraquinone dyes are stable and resistant in the aquatic system. Among the methods that have been applied to remove these dyes from wastewaters, adsorption on activated carbon has been reported as a very effective technique, and its modification with oxides and hydroxides of metals have been used to increase its surface area. In the present study, the production of activated carbon was originated by coconut shells, and a mixture of metals and metalloids, such as magnesium, silicate, lanthanum, and aluminum (AC-Mg-Si-La-Al), was used for its subsequent modification and applied to Remazol Brilliant Blue R (RBBR) removal. AC-Mg-Si-La-Al surface morphology was studied by BET, FTIR, and SEM methods. For the evaluation of AC-Mg-Si-La-Al, several parameters, such as dosage, pH, contact time, and initial RBBR concentration were studied. According to the results, in pH 5.0 ± 0.1, the dye percentage rate reached 100% by applying 0.5 g/L. Therefore, the optimal dose of 0.4 g/L and pH 5.0 ± 0.1 are selected, which leads to 99% removal of RBBR. The experimental data found to better fit to Freundlich isotherm (R2 = 0.9189) and pseudo-second-order kinetic (R2 = 0.9291) models and 4 h were the sufficient time for adsorption. According to thermodynamics, a positive value of ∆H0 (19.661 kJ/mol) suggests the endothermic nature of the process. The AC-Mg-Si-La-Al adsorbent was able to regenerate after 5 cycles of use, showing only a 17% decrease in its efficiency. Because of its effectiveness in full RBBR removal, AC-Mg-Si-La-Al could be further examined for the removal of several other dyes, even anionic or cationic.
Collapse
Affiliation(s)
- Athanasia K Tolkou
- Department of Chemistry, International Hellenic University, 65404, Kavala, Greece
| | | | - George Z Kyzas
- Department of Chemistry, International Hellenic University, 65404, Kavala, Greece.
| |
Collapse
|
8
|
Foroutan R, Peighambardoust SJ, Boffito DC, Ramavandi B. Sono-Photocatalytic Activity of Cloisite 30B/ZnO/Ag 2O Nanocomposite for the Simultaneous Degradation of Crystal Violet and Methylene Blue Dyes in Aqueous Media. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183103. [PMID: 36144892 PMCID: PMC9501628 DOI: 10.3390/nano12183103] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 05/02/2023]
Abstract
A new nanocomposite based on Cloisite 30B clay modified with ZnO and Ag2O nanoparticles (Cloisite 30B/ZnO/Ag2O) was synthesized as an effective catalyst in the sono-photocatalytic process of crystal violet (CV) and methylene blue (MB) dyes simultaneously. The characteristics and catalytic activity of Cloisite 30B/ZnO/Ag2O nanocomposite were investigated under different conditions. The specific active surface for Cloisite 30B/ZnO/Ag2O nanocomposite was 18.29 m2/g. Additionally, the catalytic activity showed that Cloisite 30B/ZnO/Ag2O nanocomposite (CV: 99.21%, MB: 98.43%) compared to Cloisite 30B/Ag2O (CV: 85.38%, MB: 83.62%) and Ag2O (CV: 68.21%, MB: 66.41%) has more catalytic activity. The catalytic activity of Cloisite 30B/ZnO/Ag2O using the sono-photocatalytic process had the maximum efficiency (CV: 99.21%, MB: 98.43%) at pH 8, time of 50 min, amount of 40 mM H2O2, catalyst dose of 0.5 g/L, and the concentration of 'CV + MB' of 5 mg/L. The catalyst can be reused in the sono-photocatalytic process for up to six steps. According to the results, •OH and h+ were effective in the degradation of the desired dyes using the desired method. Data followed the pseudo-first-order kinetic model. The method used in this research is an efficient and promising method to remove dyes from wastewater.
Collapse
Affiliation(s)
- Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471, Iran
| | - Seyed Jamaleddin Peighambardoust
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471, Iran
- Correspondence: (S.J.P.); (D.C.B.); (B.R.)
| | - Daria Camilla Boffito
- Department of Chemical Engineering, Polytechnique Monteral, Monteral, QC H3C 3A7, Canada
- Correspondence: (S.J.P.); (D.C.B.); (B.R.)
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
- Correspondence: (S.J.P.); (D.C.B.); (B.R.)
| |
Collapse
|
9
|
Liu J, Yu H, Wang L. Toward efficient removal of organic pollutants in water: A tremella-like iron containing metal-organic framework in Fenton oxidation. ENVIRONMENTAL TECHNOLOGY 2022; 43:2785-2795. [PMID: 33739227 DOI: 10.1080/09593330.2021.1903564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
The treatment of wastewater containing organic pollutants has become a serious issue, and one of the advanced oxidation process, Fenton oxidation is recognized as an ideal way owing to its universality and environmental friendliness, thus efficient and economic catalysts are in great demand. Herein by incorporating Fe2+ containing compound as ligand, a tremella-like iron containing metal-organic framework (TFMOF) was synthesized with zirconium acetate and 1,1'-ferrocene-dicarboxylic acid though a facile solvothermal method. The TFMOF combined the merits of both ferrocene moiety with well dispersed Fe2+ sites in the molecular level and MOF films with large surface areas and exposed sites. And the morphology and crystal structure of TFMOF were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Moreover, employed as an effective catalyst in Fenton oxidation, over 99%, 95% and 97% of rhodamine B, methyl orange and reactive black V were rapidly degraded without the assistance of additional irradiation, and degradation conditions like pH, H2O2 and initial pollutant concentrations as well as the reaction kinetic was investigated, indicating the hydroxyl radical generated in the presence of TFMOF and H2O2 was able to degrade the pollutants into non-toxic molecular. Besides, the catalytic activity of TFMOF maintained well after three cycles. The good activity and universality of TFMOF make it a promising catalyst for the treatment of wastewater.
Collapse
Affiliation(s)
- Jiyang Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
10
|
Compton P, Dehkordi NR, Knapp M, Fernandez LA, Alshawabkeh AN, Larese-Casanova P. Heterogeneous Fenton-Like Catalysis of Electrogenerated H2O2 for Dissolved RDX Removal. FRONTIERS IN CHEMICAL ENGINEERING 2022; 4. [DOI: 10.3389/fceng.2022.864816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
New insensitive high explosives pose great challenges to conventional explosives manufacturing wastewater treatment processes and require advanced methods to effectively and efficiently mineralize these recalcitrant pollutants. Oxidation processes that utilize the fundamental techniques of Fenton chemistry optimized to overcome conventional limitations are vital to provide efficient degradation of these pollutants while maintaining cost-effectiveness and scalability. In this manner, utilizing heterogeneous catalysts and in-situ generated H2O2 to degrade IHEs is proposed. For heterogeneous catalyst optimization, varying the surface chemistry of activated carbon for use as a catalyst removes precipitation complications associated with iron species in Fenton chemistry while including removal by adsorption. Activated carbon impregnated with 5% MnO2 in the presence of H2O2 realized a high concentration of hydroxyl radical formation - 140 μM with 10 mM H2O2 - while maintaining low cost and relative ease of synthesis. This AC-Mn5 catalyst performed effectively over a wide pH range and in the presence of varying H2O2 concentrations with a sufficient effective lifetime. In-situ generation of H2O2 removes the logistical and economic constraints associated with external H2O2, with hydrophobic carbon electrodes utilizing generated gaseous O2 for 2-electron oxygen reduction reactions. In a novel flow-through reactor, gaseous O2 is generated on a titanium/mixed metal oxide anode with subsequent H2O2 electrogeneration on a hydrophobic microporous-layered carbon cloth cathode. This reactor is able to electrogenerate 2 mM H2O2 at an optimized current intensity of 150 mA and over a wide range of flow rates, influent pH values, and through multiple iterations. Coupling these two optimization methods realizes the production of highly oxidative hydroxyl radicals by Fenton-like catalysis of electrogenerated H2O2 on the surface of an MnO2-impregnated activated carbon catalyst. This method incorporates electrochemically induced oxidation of munitions in addition to removal by adsorption while maintaining cost-effectiveness and scalability. It is anticipated this platform holds great promise to eliminate analogous contaminants.
Collapse
|
11
|
Highly removal of anionic dye from aqueous medium using a promising biochar derived from date palm petioles: Characterization, adsorption properties and reuse studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103542] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Javaid R, Qazi UY, Ikhlaq A, Zahid M, Alazmi A. Subcritical and supercritical water oxidation for dye decomposition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112605. [PMID: 33894487 DOI: 10.1016/j.jenvman.2021.112605] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
The total annual output of synthetic dyes exceeds 7 × 105 tons. About 1,000 tons of non-biodegradable synthetic dyes are released every year into the natural streams and water sources from textile wastes. The release of these colored wastewater exerts negative impact on aquatic ecology and human beings because of the poisonous and carcinogenic repercussions of dyes involved in coloration production. Therefore, with a growing interest in the environment, efficient technologies need to be developed to eliminate dyes from local and industrial wastewater. Supercritical water oxidation as a promising wastewater treatment technology has many advantages, such as a rapid reaction and pollution-free products. However, due to corrosion, salt precipitation and operational problems, supercritical water oxidation process did not gain expected industrial development. These technical difficulties can be overcome by application of non-corrosive subcritical water as a reaction medium. This work summarizes the negative impacts of dyes and role of subcritical and supercritical water and their efficiencies in dye oxidation processes.
Collapse
Affiliation(s)
- Rahat Javaid
- Renewable Energy Research Center, Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology, AIST, 2-2-9 Machiikedai, Koriyama, Fukushima, 963-0298, Japan.
| | - Umair Yaqub Qazi
- Department of Chemistry, College of Science, University of Hafr Al Batin, P.O Box 1803, Hafr Al Batin, 39524, Saudi Arabia; Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Amir Ikhlaq
- Institute of Environmental Engineering and Research, University of Engineering and Technology, GT Road, 54890, Lahore, Punjab, Pakistan
| | - Muhammad Zahid
- Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | - Amira Alazmi
- Department of Chemistry, University Colleges at Nairiyah, University of Hafr Al Batin. P.O Box 1803 Hafr Al Batin 39524, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
|
14
|
Zhu L, Shi Z, Deng L, Duan Y. Efficient degradation of sulfadiazine using magnetically recoverable MnFe2O4/δ-MnO2 hybrid as a heterogeneous catalyst of peroxymonosulfate. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125637] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Yao M, Ji D, Chen Y, Wang Z, Dong J, Zhang Q, Ramakrishna S, Zhao X. Boosting storage properties of reduced graphene oxide fiber modified with MOFs-derived porous carbon through a wet-spinning fiber strategy. NANOTECHNOLOGY 2020; 31:395603. [PMID: 32531767 DOI: 10.1088/1361-6528/ab9c57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Supercapacitors that are light weight and flexible, while occupying a low volume and demonstrating good mechanical properties are in demand for portable energy storage devices. Graphene composite fibers are supposed to be ideal electrodes for flexible fiber-shaped supercapacitors. Integration of MOFs-derived porous carbon into graphene fibers provides desirable electrochemical and mechanical properties. Herein, a general strategy is shown for the preparation of MOFs-derived porous carbon/reduced graphene oxide fibers. Close-packed and aligned graphene sheets along with porous MOFs-derived porous carbon can achieve outstanding mechanical properties through synergistic effects. Consequently, a large specific capacitance of 56.05 F cm-3, a good tensile property of 86.5 MPa and a high retention of 96.6% after 10 000 cycles can be achieved with the composite fibers. Moreover, a further deposition of polyaniline (PANI) and manganese dioxide (MnO2) by in situ growth on the fabricated composite fibers provide an improvement in specific capacitance with value of 74.21 F cm-3 and 65.08 F cm-3, respectively. The above results demonstrate the promising application of composite fibers as a flexible and stable electrode and substrate for energy storage devices.
Collapse
Affiliation(s)
- Mengyao Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Xu N, Ning L, Chen S, Hao Z, Xiao C, Zhang X, Feng Y. Melt-spun modified poly (styrene-co-butyl acrylate) fiber as a carrier to support manganese oxide and its application in dye wastewater decolorization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28209-28221. [PMID: 32415450 DOI: 10.1007/s11356-020-09105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Polymer fiber, a kind of versatile material, has been widely used in many fields. However, emerging applications still urge us to develop some new kinds of fibers. Advanced oxidation processes (AOPs) have created a promising prospect for organic wastewater decontamination; thus, it is of important significance to design a kind of special fiber that can be applied in AOPs. In this work, a viable route is proposed to fabricate manganese oxide-supporting melt-spun modified poly (styrene-co-butyl acrylate) fiber, and the prepared fiber has an excellent activity to catalyze H2O2 and O3 to decolorize dye-containing water. The results show that the decolorization of a cationic blue solution can be completely accomplished within 10 min with the prepared fiber as a catalyst, and its decolorization efficiency can reach up to 96.2% within 40 min. The concentration of total organic carbon can decrease from 20.3 to 12.3 mg/L. The prepared fiber can be reused five times without any loss in decolorization efficiency. Compared with other manganese oxide-based catalysts reported in the literature, the prepared fiber also shows many advantages in decolorizing methylene blue such as easy separation, mild reaction condition, and high decolorization efficiency. Therefore, we are confident that the fiber introduced in this study will exhibit a great application potential in the field of dye wastewater treatment.
Collapse
Affiliation(s)
- Naiku Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, College of Material Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Liqun Ning
- State Key Laboratory of Separation Membranes and Membrane Processes, College of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Shunqiang Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, College of Material Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhifen Hao
- State Key Laboratory of Separation Membranes and Membrane Processes, College of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Changfa Xiao
- State Key Laboratory of Separation Membranes and Membrane Processes, College of Material Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Xiangwu Zhang
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry, and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695-8301, USA
| | - Yan Feng
- State Key Laboratory of Separation Membranes and Membrane Processes, College of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
17
|
Choudhary N, Ghosh T, Mobin SM. Ketone Hydrogenation by Using ZnO-Cu(OH)Cl/MCM-41 with a Splash of Water: An Environmentally Benign Approach. Chem Asian J 2020; 15:1339-1348. [PMID: 32106358 DOI: 10.1002/asia.201901610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/22/2020] [Indexed: 11/10/2022]
Abstract
MCM-41-supported ZnO-Cu(OH)Cl nanoparticles were synthesized via an incipient wetness impregnation technique using zinc chloride and copper chloride salts as well as water at room temperature. The catalyst was characterized by powder X-ray diffraction (PXRD), infrared spectroscopy (IR), and TGA, whereas surface and morphological studies were performed by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The above studies revealed the incorporation of metal species into the pores of MCM-41, leading to a decrease in surface area of the nanoparticles that was found to be 239.079 m2 /g. The substituents attached to the ketone determine the rate of the reaction, and the utilization of the green solvent 'water' astonishingly completes the hydrogenation reaction in 45 minutes at 40 °C with 100% conversion and 100% selectivity as analyzed by gas chromatography-mass spectrometry. Hence, ZnO-Cu(OH)Cl/MCM-41 nanoparticles with 2.46 wt% zinc and 6.39 wt% copper were demonstrated as an active catalyst for the reduction of ketones without using any gaseous hydrogen source making it highly efficient as well as environmentally and economically benign.
Collapse
Affiliation(s)
- Neha Choudhary
- Discipline of Chemistry, Indian Institute of Technology Indore Simrol, Khandwa Road, Indore, 453552, India
| | - Topi Ghosh
- Discipline of Chemistry, Indian Institute of Technology Indore Simrol, Khandwa Road, Indore, 453552, India
| | - Shaikh M Mobin
- Discipline of Chemistry, Indian Institute of Technology Indore Simrol, Khandwa Road, Indore, 453552, India.,Discipline of Metallurgy Engineering and Material Science, Indian Institute of Technology Indore Simrol, Khandwa Road, Indore, 453552, India.,Discipline for Biosciences and Bio-Medical Engineering, Indian Institute of Technology Indore Simrol, Khandwa Road, Indore, 453552, India
| |
Collapse
|
18
|
Chiam SL, Pung SY, Yeoh FY. Recent developments in MnO 2-based photocatalysts for organic dye removal: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5759-5778. [PMID: 31933078 DOI: 10.1007/s11356-019-07568-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
The textile industry consumes a large volume of organic dyes and water. These organic dyes, which remained in the effluents, are usually persistent and difficult to degrade by conventional wastewater treatment techniques. If the wastewater is not treated properly and is discharged into water system, it will cause environmental pollution and risk to living organisms. To mitigate these impacts, the photo-driven catalysis process using semiconductor materials emerges as a promising approach. The semiconductor photocatalysts are able to remove the organic effluent through their mineralization and decolorization abilities. Besides the commonly used titanium dioxide (TiO2), manganese dioxide (MnO2) is a potential photocatalyst for wastewater treatment. MnO2 has a narrow bandgap energy of 1~2 eV. Thus, it possesses high possibility to be driven by visible light and infrared light for dye degradation. This paper reviews the MnO2-based photocatalysts in various aspects, including its fundamental and photocatalytic mechanisms, recent progress in the synthesis of MnO2 nanostructures in particle forms and on supporting systems, and regeneration of photocatalysts for repeated use. In addition, the effect of various factors that could affect the photocatalytic performance of MnO2 nanostructures are discussed, followed by the future prospects of the development of this semiconductor photocatalysts towards commercialization.
Collapse
Affiliation(s)
- Sin-Ling Chiam
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Swee-Yong Pung
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Fei-Yee Yeoh
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
19
|
Javaid R, Qazi UY. Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2066. [PMID: 31212717 PMCID: PMC6603921 DOI: 10.3390/ijerph16112066] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 01/08/2023]
Abstract
Dyes are used in various industries as coloring agents. The discharge of dyes, specifically synthetic dyes, in wastewater represents a serious environmental problem and causes public health concerns. The implementation of regulations for wastewater discharge has forced research towards either the development of new processes or the improvement of available techniques to attain efficient degradation of dyes. Catalytic oxidation is one of the advanced oxidation processes (AOPs), based on the active radicals produced during the reaction in the presence of a catalyst. This paper reviews the problems of dyes and hydroxyl radical-based oxidation processes, including Fenton's process, non-iron metal catalysts, and the application of thin metal catalyst-coated tubular reactors in detail. In addition, the sulfate radical-based catalytic oxidation technique has also been described. This study also includes the effects of various operating parameters such as pH, temperature, the concentration of the oxidant, the initial concentration of dyes, and reaction time on the catalytic decomposition of dyes. Moreover, this paper analyzes the recent studies on catalytic oxidation processes. From the present study, it can be concluded that catalytic oxidation processes are very active and environmentally friendly methods for dye removal.
Collapse
Affiliation(s)
- Rahat Javaid
- Renewable Energy Research Center, Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology, AIST, 2-2-9 Machiikedai, Koriyama, Fukushima 963-0298, Japan.
| | - Umair Yaqub Qazi
- Chemistry Department, College of Science, University of Hafr Al Batin, P.O Box 1803 Hafr Al Batin 31991, Saudi Arabia.
| |
Collapse
|
20
|
Reactive Black 5 Degradation on Manganese Oxides Supported on Sodium Hydroxide Modified Graphene Oxide. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9102167] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sodium hydroxide-modified graphene oxide was used as manganese oxides support for the preparation of nanocomposites via a one-pot preparation route for the degradation of Reactive Black 5. The nanocomposites were characterized for their structure by X-ray diffraction, for their textural properties by Nitrogen adsorption, and for their surface chemistry by Fourier transform infrared spectroscopy, potentiometric titration, and thermal analysis measurements. The nanocomposites prepared showed to possess high activity for the degradation/oxidation of Reactive Black 5 at ambient conditions, without light irradiation, which was higher than that of the precursors manganese oxides and can be attributed to the synergistic effect of the manganese oxides and the modified graphene oxide.
Collapse
|