1
|
Yang C, Zhu K, Yan B. Efficient Multi-stimulus-Responsive Luminescent Eu(III)-Modified HOFs Materials: Detecting Thiram and Caffeic Acid and Constructing a Flexible Substrate Anti-counterfeiting Platform. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38597280 DOI: 10.1021/acsami.4c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The powerful capability of multi-stimulus-responsive luminescent hydrogen-bonded organic frameworks (HOFs) to respond to external chemical or physical stimuli in various manners makes them appealing in the luminescence anti-counterfeiting field. Herein, a novel Eu3+-functionalized HOF (Eu@GC-2) that combines the emission of HOFs with the characteristic emission of Eu3+ ions has been successfully synthesized, which can generate various fluorescence at different excitation wavelengths. Eu@GC-2 has enormous potential as a raw material for a paper-based sensor that is designed for detecting the pesticides thiram and caffeic acid in crops with favorable selectivity, anti-interference, and high efficiency. Based on the above excellent properties, Ln3+-functionalized HOFs (Ln@GC-2) were then employed to produce four luminescent anti-counterfeiting inks. With the incorporation of back-propagation neural network and Gray code conversion functions, a multi-stimulus-responsive luminescent anti-counterfeiting platform, coregulated by the excitation light and the chemical reagent, has been constructed. This approach can not only achieve multiple encryptions and fast information identification but also enhance the code-breaking complexity, making it an efficient strategy for information encryption and decryption.
Collapse
Affiliation(s)
- Chunyu Yang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Kai Zhu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
2
|
Yang X, Lv S, Gan L, Wang C, Wang Z, Zhang Z. Single-Fe-Atom Catalyst for Sensitive Electrochemical Detection of Caffeic Acid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53189-53197. [PMID: 37946326 DOI: 10.1021/acsami.3c11378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
A single-atom catalyst (Fe SAs/-N-C) with excellent stability and conductivity was strategically fabricated via high-temperature calcination using the NiFe layered double hydroxide (LDH)/ZIF-8 composite as precursors. With the help of Ni as a catalyst, a great number of carbon nanotubes were produced whereby the isolated carbon bulks were interconnected to form an "island-bridge"-like 3D network structure, which greatly enhanced the exposure of active sites and the electron transfer. Accordingly, caffeic acid (CA) with versatile biological and pharmacological activities was chosen as the model analyte. The Fe SAs/-N-C with Fe-N4 as the catalytic active site was employed to establish the electrochemical sensing of CA with satisfactory sensitivity, selectivity, and long-term stability. This work expands the application range of single-atom catalysts and contributes a significant reference for the synthesis of hybrid double-atom catalysts.
Collapse
Affiliation(s)
- Xiumin Yang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Sijia Lv
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Liyong Gan
- Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing 400030, China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhonghai Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
3
|
Li Y, Yang Y, Huang Y, Li J, Zhao P, Fei J, Xie Y. An ultrasensitive dietary caffeic acid electrochemical sensor based on Pd-Ru bimetal catalyst doped nano sponge-like carbon. Food Chem 2023; 425:136484. [PMID: 37295208 DOI: 10.1016/j.foodchem.2023.136484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/11/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Caffeic acid (CA) is widely present in the human daily diet, and a reliable CA detection method is beneficial to food safety. Herein, we constructed a CA electrochemical sensor employing a glassy carbon electrode (GCE) which was modified by the bimetallic Pd-Ru nanoparticles decorated N-doped spongy porous carbon obtained by pyrolysis of the energetic metal-organic framework (MET). The high-energy bond N-NN in MET explodes to form N-doped sponge-like carbon materials (N-SCs) with porous structures, boosting the adsorptive capacity for CA. The addition of Pd-Ru bimetal improves the electrochemical sensitivity. The linear range of the PdRu/N-SCs/GCE sensor is 1 nM-100 nM and 100 nM-15 μM, with a low detection limit (LOD) of 0.19 nM. It has a high sensitivity (55 μA/μM) and repeatability. The PdRu/N-SCs/GCE sensor has been used to detect CA in actual samples of red wine, strawberries, and blueberries, providing a novel approach for CA detection in food analysis.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Yaqi Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Yutian Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Jiejun Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China; Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, People's Republic of China.
| |
Collapse
|
4
|
Düzmen Ş, Aslanoglu M. Construction of a graphene nanoplatelets-erbium oxide based voltammetric platform for the sensitive determination of terbutaline. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
adir Mahieddine A, Adnane-Amara L. Constructing and electrochemical performance of NiCo-LDHs@h-Ni NWs core-shell for hydrazine detection in environmental samples. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Magerusan L, Pogacean F, Pruneanu S. Eco-friendly synthesis of sulphur-doped graphenes with applicability in caffeic acid electrochemical assay. Bioelectrochemistry 2022; 148:108228. [PMID: 35970121 DOI: 10.1016/j.bioelechem.2022.108228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/28/2022]
Abstract
A new electrode based on glassy carbon modified with a sulphur-doped graphene material was successfully developed and applied for caffeic acid (CA) voltammetric detection and quantification. The structural features of sulphur-doped graphene (exfGR-S) characterized by different physicochemical and analytical techniques are presented. Cyclic voltammetry (CV) technique was employed to evaluate the electrochemical behavior of both bare glassy carbon (GCE) and modified GCE/exfGr-S electrodes towards CA oxidation. The study revealed that the modified electrode exhibits superior electrochemical performances compared to the bare electrode, with a broad CA detecting range (from 0.1 to 100.0 µM), a low detection limit 3.03 × 10-8 M), excellent anti-interference capabilities, as well as good stability and repeatability. The developed electrochemical sensor appears to be a promising candidate for real sample quality control analysis since it successfully displayed its ability to directly detect CA in commercially available coffee product without any pretreatment.
Collapse
Affiliation(s)
- Lidia Magerusan
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, RO, 400293 Cluj-Napoca, Romania.
| | - Florina Pogacean
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, RO, 400293 Cluj-Napoca, Romania
| | - Stela Pruneanu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, RO, 400293 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Yin C, Zhuang Q, Xiao Q, Wang Y, Xie J. Electropolymerization of poly(methylene blue) on flower-like nickel-based MOFs used for ratiometric electrochemical sensing of total polyphenolic content in chrysanthemum tea. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1154-1163. [PMID: 33595032 DOI: 10.1039/d1ay00028d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A ratiometric electrochemical sensor for caffeic acid (CAE) detection was constructed using a glassy carbon electrode modified with poly(methylene blue) and flower-like nickel-based metal organic frameworks (PMB@Ni-TPA/GCE). The electrochemical behavior of CAE was investigated at the PMB@Ni-TPA/GCE, and was found to follow a two-electron, two-proton electrooxidation process. PMB was used as the internal reference probe, and Ni-TPA can enhance the electrochemical signals of both CAE and PMB. As the CAE concentration increases, the oxidation peak current of CAE is enhanced but that of PMB keeps almost unchanged. The oxidation peak current ratio between CAE and PMB recorded by differential pulse voltammetry changes linearly with CAE concentration over the range of 0.25-15.0 μM, with a detection limit of 0.2 μM. The proposed sensor was successfully employed to evaluate the total polyphenolic content as CAE equivalent in chrysanthemum tea, and the results were comparable with those given by the reference Folin-Ciocalteu spectrophotometry.
Collapse
Affiliation(s)
- Chang Yin
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Qianfen Zhuang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Qin Xiao
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Yong Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China. and College of Chemistry, Nanchang University, Nanchang 330031, China and Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
8
|
Curulli A. Nanomaterials in Electrochemical Sensing Area: Applications and Challenges in Food Analysis. Molecules 2020; 25:E5759. [PMID: 33297366 PMCID: PMC7730649 DOI: 10.3390/molecules25235759] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/01/2023] Open
Abstract
Recently, nanomaterials have received increasing attention due to their unique physical and chemical properties, which make them of considerable interest for applications in many fields, such as biotechnology, optics, electronics, and catalysis. The development of nanomaterials has proven fundamental for the development of smart electrochemical sensors to be used in different application fields such, as biomedical, environmental, and food analysis. In fact, they showed high performances in terms of sensitivity and selectivity. In this report, we present a survey of the application of different nanomaterials and nanocomposites with tailored morphological properties as sensing platforms for food analysis. Particular attention has been devoted to the sensors developed with nanomaterials such as carbon-based nanomaterials, metallic nanomaterials, and related nanocomposites. Finally, several examples of sensors for the detection of some analytes present in food and beverages, such as some hydroxycinnamic acids (caffeic acid, chlorogenic acid, and rosmarinic acid), caffeine (CAF), ascorbic acid (AA), and nitrite are reported and evidenced.
Collapse
Affiliation(s)
- Antonella Curulli
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) CNR, Via del Castro Laurenziano 7, 00161 Roma, Italy
| |
Collapse
|
9
|
Bounegru AV, Apetrei C. Voltamperometric Sensors and Biosensors Based on Carbon Nanomaterials Used for Detecting Caffeic Acid-A Review. Int J Mol Sci 2020; 21:E9275. [PMID: 33291758 PMCID: PMC7730703 DOI: 10.3390/ijms21239275] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Caffeic acid is one of the most important hydroxycinnamic acids found in various foods and plant products. It has multiple beneficial effects in the human body such as antioxidant, antibacterial, anti-inflammatory, and antineoplastic. Since overdoses of caffeic acid may have negative effects, the quality and quantity of this acid in foods, pharmaceuticals, food supplements, etc., needs to be accurately determined. The present paper analyzes the most representative scientific papers published mostly in the last 10 years which describe the development and characterization of voltamperometric sensors or biosensors based on carbon nanomaterials and/or enzyme commonly used for detecting caffeic acid and a series of methods which may improve the performance characteristics of such sensors.
Collapse
Affiliation(s)
| | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domnească Street, 800008 Galaţi, Romania;
| |
Collapse
|
10
|
Kumar DR, Sayed MS, Baynosa ML, Shim JJ. 5-Amino-2-mercapto-1,3,4-thiadiazole coated nitrogen-doped-carbon sphere composite for the determination of phenolic compounds. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Vinoth S, Govindasamy M, Wang SF, Anandaraj S. Layered nanocomposite of zinc sulfide covered reduced graphene oxide and their implications for electrocatalytic applications. ULTRASONICS SONOCHEMISTRY 2020; 64:105036. [PMID: 32146333 DOI: 10.1016/j.ultsonch.2020.105036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Herein, we have synthesized zinc sulfide nanospheres (ZnS NPs) encapsulated on reduced graphene oxide (RGO) hybrid by an ultrasonic bath (50 kHz/60 W). The physical and structural properties of ZnS NPs@RGO hybrid were analyzed by TEM, XRD, EIS and EDS. As-prepared ZnS NPs@RGO hybrid was applied towards the electrochemical determination of caffeic acid (CA) in various food samples. The ZnS NPs@RGO hybrid modified electrode (GCE) exhibited an excellent electrocatalytic performance towards caffeic acid detection and determination, when compared to other modified electrodes. Therefore, the electrochemical sensing performance of the fabricated and nanocomposite modified electrode was significantly improved owing to the synergistic effect of ZnS NPs and RGO catalyst. Furthermore, the hybrid materials provide highly active electro-sites as well as rapid electron transport pathways. The proposed electrochemical caffeic acid sensor produces a wide linear range of 0.015-671.7 µM with a nanomolar level detection limit (3.29 nM). In addition, the real sample analysis of the proposed sensor has applied to the determination of caffeic acid in various food samples.
Collapse
Affiliation(s)
- Subramaniyan Vinoth
- Department of Materials Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Mani Govindasamy
- Department of Materials Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Sea-Fue Wang
- Department of Materials Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Sathiyan Anandaraj
- Department of Chemistry, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu 620017, India
| |
Collapse
|
12
|
Mollaei M, Ghoreishi SM, Khoobi A. Multivariate optimization and validation of a new procedure for simultaneous determination of folic acid and folinic acid based on enhancement effect of n-dodecylpyridinium chloride. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Jiao J, Pan M, Liu X, Liu J, Li B, Chen Q. An Ultrasensitive Non-Enzymatic Sensor for Quantitation of Anti-Cancer Substance Chicoric Acid Based on Bimetallic Nanoalloy with Polyetherimide-Capped Reduced Graphene Oxide. NANOMATERIALS 2020; 10:nano10030499. [PMID: 32164270 PMCID: PMC7153584 DOI: 10.3390/nano10030499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/24/2022]
Abstract
Exploiting effective therapies to fight tumor growth is an important part of modern cancer research. The anti-cancer activities of many plant-derived substances are well known, in part because the substances are often extensively distributed. Chicoric acid, a phenolic compound widely distributed in many plants, has drawn widespread attention in recent years because of its extraordinary anti-cancer activities. However, traditional methods for quantifying chicoric acid are inefficient and time-consuming. In this study, an ultrasensitive non-enzymatic sensor for the determination of chicoric acid was developed based on the use of an Au@Pt-polyetherimide-reduced graphene oxide (PEI-RGO) nanohybrid-modified glassy carbon electrode. Owing to the considerable conductivity of PEI-functionalized RGO and the efficient electrocatalytic activity of Au@Pt nanoalloys, the designed sensor exhibited a high capacity for chicoric acid measurement, with a low detection limit of 4.8 nM (signal-to-noise ratio of 3) and a broad linear range of four orders of magnitude. With the advantages provided by the synergistic effects of Au@Pt nanocomposites and PEI-RGO, the developed sensor also revealed exceptional electrochemical characteristics, including superior sensitivity, fast response, acceptable long-term stability, and favorable selectivity. This work provides a powerful new platform for the highly accurate measurement of chicoric acid quantities, facilitating further research into its potential as a cancer treatment.
Collapse
|
14
|
Gong Y, Ma N, Yin Y, Xue J, Dong C, Guo P. Synthesis of PdCu nanowire assembly and their catalytic activity toward ethanol oxidation. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Saleh TA, Fadillah G, Saputra OA. Nanoparticles as components of electrochemical sensing platforms for the detection of petroleum pollutants: A review. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|