1
|
Papageorgiou M, Kitsou I, Gkomoza P, Alivisatou AA, Papaparaskevas J, Tsetsekou A. Bioinspired synthesis of multifunctional, highly stable polymeric templated silver-silica colloids as catalytic and antibacterial coatings for paper. Colloids Surf B Biointerfaces 2024; 240:113997. [PMID: 38815309 DOI: 10.1016/j.colsurfb.2024.113997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
In this paper, a simple, bottom up, bioinspired technique is proposed for the synthesis of highly stable colloids of silica supported spherical silver nanoparticles (SiO2@Ag) that act as efficient catalytic and antimicrobial coatings for an organic substrate, filter paper. The core - shell structure and the highly branched dendritic polymer, poly(ethylene)imine, enabled the precise control of growth rate and morphology of silica and silver nanoparticles. The polymer also enabled the deposition of these nanoparticles onto an organic substrate, filter paper, through immersion by modifying its surface. The catalytic and antibacterial properties of these samples were assessed. The results obtained from this analysis showed a complete degradation of an aqueous pollutant, 4-nitrophenol, for 6 successive catalytic cycles without intermediate purification steps. Furthermore, the polymeric silica-silver suspension proved to express antibacterial activity against both Gram-positive and Gram-negative bacteria (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa). The antibacterial properties were evaluated according to the disk diffusion method, whereas the Minimum Inhibitory Concentration was also determined. The samples were examined by Scanning Electron Microscopy, Transmission Electron Microscopy, X-ray diffraction analysis, z-potential analysis, Fourier Transform Infrared Spectroscopy and Ultraviolet-visible Spectroscopy.
Collapse
Affiliation(s)
- Michaela Papageorgiou
- School of Mining & Metallurgical Engineering, National Technical University of Athens, Athens 106 82, Greece
| | - Ioanna Kitsou
- School of Mining & Metallurgical Engineering, National Technical University of Athens, Athens 106 82, Greece
| | - Paraskevi Gkomoza
- School of Mining & Metallurgical Engineering, National Technical University of Athens, Athens 106 82, Greece
| | | | - Joseph Papaparaskevas
- Microbiology Department, School of Medicine, National and Kapodistrian University of Athens, Athens 115 27, Greece
| | - Athena Tsetsekou
- School of Mining & Metallurgical Engineering, National Technical University of Athens, Athens 106 82, Greece.
| |
Collapse
|
2
|
Xu Y, Zheng H, Sui J, Lin H, Cao L. Rapid and Sensitive Fluorescence Detection of Staphylococcus aureus Based on Polyethyleneimine-Enhanced Boronate Affinity Isolation. Foods 2023; 12:foods12071366. [PMID: 37048187 PMCID: PMC10093574 DOI: 10.3390/foods12071366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
There are increasing demands for fast and simple detection of pathogens in foodstuffs. Fluorescence analysis has demonstrated significant advantages for easy operation and high sensitivity, although it is usually hindered by a complex matrix, low bacterial abundance, and long-term bacterial enrichment. Effective enrichment procedures are required to meet the requirements for food detection. Here, boronate-functionalized cellulose filter paper and specific fluorescent probes were combined. An integrated approach for the enrichment of detection of Staphylococcus aureus was proposed. The modification of polyethyleneimine demonstrated a significant effect in enhancing the bacterial enrichment, and the boronate affinity efficiency of the paper was increased by about 51~132%. With optimized conditions, the adsorption efficiency for S. aureus was evaluated as 1.87 × 108 CFU/cm2, the linear range of the fluorescent analysis was 104 CFU/mL~108 CFU/mL (R2 = 0.9835), and the lowest limit of detection (LOD) was calculated as 2.24 × 102 CFU/mL. Such efficiency was validated with milk and yogurt samples. These results indicated that the material had a high enrichment capacity, simple operation, and high substrate tolerance, which had the promising potential to be the established method for the fast detection of food pathogens.
Collapse
Affiliation(s)
- Yujia Xu
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hongwei Zheng
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
| | - Jianxin Sui
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Limin Cao
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
3
|
Garg R, Rani P, Garg R, Khan MA, Khan NA, Khan AH, Américo-Pinheiro JHP. Biomedical and catalytic applications of agri-based biosynthesized silver nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119830. [PMID: 35926739 DOI: 10.1016/j.envpol.2022.119830] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Nanotechnology has been recognized as the emerging field for the synthesis, designing, and manipulation of particle structure at the nanoscale. Its rapid development is also expected to revolutionize industries such as applied physics, mechanics, chemistry, and electronics engineering with suitably tailoring various nanomaterials. Inorganic nanoparticles such as silver nanoparticles (Ag-NPs) have garnered more interest with their diverse applications. In correspondence to green chemistry, researchers prioritize green synthetic techniques over conventional ones due to their eco-friendly and sustainable potential. Green-synthesized NPs have proven more beneficial than those synthesized by conventional methods because of capping by secondary metabolites. The present study reviews the various means being used by the researchers for the green synthesis of Ag-NPs. The morphological characteristics of these NPs as obtained from numerous characterization techniques have been explored. The potential applications of bio-synthesized Ag-NPs viz. Antimicrobial, antioxidant, catalytic, and water remediation along with the plausible mechanisms have been discussed. In addition, toxicity analysis and biomedical applications of these NPs have also been reviewed to provide a detailed overview. The study signifies that biosynthesized Ag-NPs can be efficiently used for various applications in the biomedical and industrial sectors as an environment-friendly and efficient tool.
Collapse
Affiliation(s)
- Rajni Garg
- Department of Chemistry, University School of Sciences, Rayat-Bahra University, Mohali, Punjab, 140104, India
| | - Priya Rani
- Department of Chemistry, University School of Sciences, Rayat-Bahra University, Mohali, Punjab, 140104, India
| | - Rishav Garg
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Mohammad Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Nadeem Ahmad Khan
- Civil Engineering Department, Faculty of Engineering, Jamia Millia Islamia University, New Delhi, India
| | - Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, P.O. Box. 706, Jazan, 45142, Saudi Arabia
| | | |
Collapse
|
4
|
He M, Song T, Qi H, Xiang Z. An environment-friendly dip-catalyst with xylan-based catalytic paper coatings. Carbohydr Polym 2022; 275:118707. [PMID: 34742432 DOI: 10.1016/j.carbpol.2021.118707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022]
Abstract
Replacing catalyst supports with sustainable and degradable materials is an urgent task. Xylan is a type of abundant natural polymers with potential applications in dispersing, anchoring, and coating materials, but its material values have always been underestimated. In this study, polyethyleneimine modified dialdehyde xylan (DAX-PEI) was used as a dispersing and anchoring agent to bind Pd nanoparticles onto paper surface to produce a DAX-PEI-Pd coated paper, which was used to catalyze Suzuki-Miyaura reactions. The catalytic coated paper exhibited a good catalytic activity with a yield of 91% and a high turnover frequency (TOF) of 3300 h-1. Besides, it showed an excellent recyclability with the same catalytic coated paper being used 15 times and still having a yield of nearly 90%. This environment-friendly catalytic coated paper owns its great prospect in organic synthesis.
Collapse
Affiliation(s)
- Mengyun He
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tao Song
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
5
|
Khan GA, Esentürk EN, Bek A, Bhatti AS, Ahmed W. Fabrication of Highly Catalytically Active Gold Nanostructures on Filter‐Paper and Their Applications towards Degradation of Environmental Pollutants. ChemistrySelect 2021. [DOI: 10.1002/slct.202102266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ghazanfar Ali Khan
- Materials Laboratory Department of Physics COMSATS University Islamabad Park Road 45500 Islamabad Pakistan
| | | | - Alpan Bek
- Department of Physics Middle East Technical University 06800 Ankara Turkey
| | - Arshad Saleem Bhatti
- Centre of Micro and Nanodevices (CMND) Department of Physics COMSATS University Islamabad Park Road 45500 Islamabad Pakistan
| | - Waqqar Ahmed
- Materials Laboratory Department of Physics COMSATS University Islamabad Park Road 45500 Islamabad Pakistan
| |
Collapse
|
6
|
Gemeay AH, El-Halwagy ME, Elsherbiny AS, Zaki AB. Amine-rich quartz nanoparticles for Cu(II) chelation and their application as an efficient catalyst for oxidative degradation of Rhodamine B dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28289-28306. [PMID: 33534102 DOI: 10.1007/s11356-021-12497-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The study describes the loading of the quartz SiO2 nanoparticles (NPs) with (3-aminopropyl)triethoxysilane (APTES) linker with simultaneous lengthening of the linker through the terminal amine group by glutaraldehyde (GA). The reactive polyethylenimine (PEI) was introduced to the surface to increase the ability to capture Cu(II) ions. The composite got the abbreviation SiO2/PEI-Cu(II). The Cu(II) ions were the active center with a peroxo-complex activation state. The composite characterization included scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron-dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) surface analyzer. The kinetics of the oxidative degradation of Rhodamine B (RhB) dye obeyed the pseudo-first order under flooding conditions. The reaction parameters including the catalyst dose, solution pH, initial concentration of reactants, and temperature got some attention. The obtained results showed that more than 91.7 ± 1% of RhB dye was degraded to CO2, NH4+, NO3-, H2O, and some inorganic acids after 30 min as confirmed by gas chromatography mass spectrometry and total organic carbon (TOC) measurements. Also, GC-MS spectra for water samples drawn from the reaction in successive periods had suggested a conceivable degradation pathway for RhB by hydroxyl radicals. Degradation starts with de-alkylation then carboxyphenyl removal followed by two successive ring-opening stages. Both the effects of the catalyst recycling and treated water reusability on the reaction rate were studied. The catalyst provided noticeable stability over three consecutive cycles.
Collapse
Affiliation(s)
- Ali H Gemeay
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohamed E El-Halwagy
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Ethylene Production Sector, Sidi Kerir Petrochemicals Company, Alexandria, Egypt
| | - Abeer S Elsherbiny
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Ahmed B Zaki
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
7
|
Majhi S, Sharma K, Singh R, Ali M, Tripathi CSP, Guin D. Development of Silver Nanoparticles Decorated on Functional Glass Slide as Highly Efficient and Recyclable Dip Catalyst. ChemistrySelect 2020. [DOI: 10.1002/slct.202002492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shukla Majhi
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi- 221005 Uttar Pradesh India
| | - Keshav Sharma
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi- 221005 Uttar Pradesh India
| | - Renuka Singh
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi- 221005 Uttar Pradesh India
| | - Mohd Ali
- Department of Physics Institute of Science Banaras Hindu University Varanasi- 221005 Uttar Pradesh India
| | | | - Debanjan Guin
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi- 221005 Uttar Pradesh India
| |
Collapse
|
8
|
Shi D, Ouyang Z, Zhao Y, Xiong J, Shi X. Catalytic Reduction of Hexavalent Chromium Using Iron/Palladium Bimetallic Nanoparticle-Assembled Filter Paper. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1183. [PMID: 31434252 PMCID: PMC6724082 DOI: 10.3390/nano9081183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/10/2019] [Accepted: 08/16/2019] [Indexed: 11/26/2022]
Abstract
Iron/palladium bimetallic nanoparticles (Fe/Pd NPs) are important catalytic materials for the field of environmental remediation. In the present study, filter paper was employed as a substrate for the assembly of Fe/Pd NPs and further applied for the catalytic conversion of hexavalent chromium Cr(VI) toward trivalent Cr(III). First, a filter paper with negative charge was assembled with a layer of positively charged polyethylenimine (PEI) through electrostatic interaction; then, the abundant amine groups of PEI were used to complex Fe(III) ions, followed by reduction via sodium borohydride to produce an Fe NP-assembled filter paper. Thereafter, the Fe/Pd NPs were produced by the reduction of PdCl42- through Fe NPs. The prepared filter paper assembled with Fe/Pd NPs with a mean diameter of 10.1 nm was characterized by various techniques. The Fe/Pd NP-assembled filter paper possesses powerful catalytic activity and can be used to transform Cr(VI) to Cr(III). With its low cost, high sustainability, and convenient industrialization potential, the developed approach may be extended to produce other bimetallic NP-immobilized filter paper for different environmental remediation applications.
Collapse
Affiliation(s)
- Daniel Shi
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhijun Ouyang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yili Zhao
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Jie Xiong
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|