1
|
Sun W, Kou XH, Wu CE, Fan GJ, Li TT, Cheng X, Xu K, Suo A, Tao Z. Low-temperature plasma modification, structural characterization and anti-diabetic activity of an apricot pectic polysaccharide. Int J Biol Macromol 2023; 240:124301. [PMID: 37004936 DOI: 10.1016/j.ijbiomac.2023.124301] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
To fully research the anti-diabetic activity of apricot polysaccharide, low temperature plasma (LTP) was used to modify apricot polysaccharide. The modified polysaccharide was isolated and purified using column chromatography. It was found that LTP modification can significantly improve the α-glucosidase glucosidase inhibition rate of apricot polysaccharides. The isolated fraction FAPP-2D with HG domain showed excellent anti-diabetic activity in insulin resistance model in L6 cell. We found that FAPP-2D increased the ADP/ATP ratio and inhibited PKA phosphorylation, activating the LKB1-AMPK pathway. Moreover, FAPP-2D activated AMPK-PGC1α pathway, which could stimulated mitochondrial production and regulate energy metabolism, promoting GLUT4 protein transport to achieve an anti-diabetic effect. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy data showed that the LTP modification could increase the CH bond content while decreasing the C-O-C/C-O bond content, indicating that LTP destroyed the C-O-C/C-O bond, which enhanced the anti-diabetes activity of the modified apricot pectin polysaccharide. Our findings could pave the way for the molecular exploitation of apricot polysaccharides and the application of low-temperature plasma.
Collapse
Affiliation(s)
- Wenjuan Sun
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Nanjing Institute of Product Quality Inspection (Nanjing Institute of Quality Development and Advanced Technology Application), Nanjing 210019, China
| | - Xiao-Hong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Cai-E Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Gong-Jian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Ting-Ting Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xin Cheng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Kaiqian Xu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Andi Suo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Zheng Tao
- Yangzhou Inspection and Testing Center (National Quality Inspection and Testing Center for Toiletries), Yangzhou 225111, China
| |
Collapse
|
2
|
Brito J, Asawa K, Marin A, Andrianov AK, Choi CH, Sukhishvili SA. Hierarchically Structured, All-Aqueous-Coated Hydrophobic Surfaces with pH-Selective Droplet Transfer Capability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26225-26237. [PMID: 35611942 DOI: 10.1021/acsami.2c04499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Often inspired by nature, techniques for precise droplet manipulation have found applications in microfluidics, microreactors, and water harvesting. However, a widely applicable strategy for surface modification combining simultaneous hydrophobicity and pH-sensitivity has not yet been achieved by employing environmentally friendly assembly conditions. The introduction of pH-responsive groups to an otherwise fluorinated polyphosphazene (PPZ) unlocks pH-selective droplet capture and transfer. Here, an all-aqueous layer-by-layer (LbL) deposition of polyelectrolytes is used to create unique hydrophobic coatings, endowing surfaces with the ability to sense environmental pH. The high hydrophobicity of these coatings (ultimately reaching a contact angle >120° on flat surfaces) is enabled by the formation of hydrophobic nanoscale domains and controllable by the degree of fluorination of PPZs, polyamine-binding partners, deposition pH, and coating thickness. Inspired by the hierarchical structure of rose petals, these versatile coatings reach a contact angle >150° when deposited on structured surfaces while introducing a tunable adhesivity that enables precise droplet manipulation. The films exhibited a strongly pronounced parahydrophobic rose petal behavior characterized through the contact angle hysteresis. Depositing as few as five bilayers (∼25 nm) on microstructured rather than smooth substrates resulted in superhydrophobicity with water contact angles >150° and the attenuation of the contact angle hysteresis, enabling highly controlled transfer of aqueous droplets. The pH-selective droplet transfer was achieved between surfaces with either the same microstructure and LbL film building blocks, which were assembled at different pH, or between surfaces with different microstructures coated with identical films. The demonstrated capability of these hydrophobic LbL films to endow surfaces with controlled hydrophobicity through adsorption from aqueous solutions and control the adhesion and transfer of water droplets between surfaces can be used in droplet-based microfluidics applications and water collection/harvesting.
Collapse
Affiliation(s)
- Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kaustubh Asawa
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Chang-Hwan Choi
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
3
|
Zambuzi GC, Camargos CH, Ferreira MP, Rezende CA, de Freitas O, Francisco KR. Modulating the controlled release of hydroxychloroquine mobilized on pectin films through film-forming pH and incorporation of nanocellulose. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|