1
|
Lim SX, Duan F. Effect of Mixed Surfactant on Evaporation Driven Salt Crystallization Morphology in Sessile Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27617-27625. [PMID: 39680678 DOI: 10.1021/acs.langmuir.4c04089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Extensive studies have been conducted to manipulate the morphology of sodium chloride salt crystals to tailor their physical and chemical properties. Among the myriad factors considered, the effects of the substrate and additives have profound impacts on the types of salt depositions. Surface charge effects and various ionic surfactants influence ion movement, resulting in diverse crystal morphologies. This manuscript aims to provide a consolidated summary by concurrently studying multiple effects to uncover the salt crystal morphology under the influence of two oppositely charged ionic surfactants on charged and neutral surfaces. The cationic surfactant cetyltrimethylammonium bromide induces skeletal crystal growth by retarding salt precipitation until supersaturation is reached. Conversely, the anionic surfactant sodium dodecyl sulfate hinders ion diffusion at the three-phase contact line. Each surfactant effect is dominant at higher molar concentrations. Surface charge affects the amount of surface adsorption and free-moving ions within the saline surfactant droplets, greatly influencing the number of salt crystals formed on the neutral substrate. However, charge neutralization at the highest concentrations of both surfactants nullifies the surface charge effect, resulting in practically indistinguishable salt crystals with similar sizes and numbers, leading to only a small area difference of 1461 μm2. This study provides insights into the kinetics of crystallization under the combined influence of anionic, cationic, and surface charge interactions. The findings can serve as a future reference for predicting and controlling ionic interactions and crystal morphology.
Collapse
Affiliation(s)
- Si Xian Lim
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering,Nanyang Technological University, Singapore 639798, Singapore
| | - Fei Duan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
2
|
Chaparro G, Müller EA. Simulation and Data-Driven Modeling of the Transport Properties of the Mie Fluid. J Phys Chem B 2024; 128:551-566. [PMID: 38181201 PMCID: PMC10801693 DOI: 10.1021/acs.jpcb.3c06813] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024]
Abstract
This work reports the computation and modeling of the self-diffusivity (D*), shear viscosity (η*), and thermal conductivity (κ*) of the Mie fluid. The transport properties were computed using equilibrium molecular dynamics simulations for the Mie fluid with repulsive exponents (λr) ranging from 7 to 34 and at a fixed attractive exponent (λa) of 6 over the whole fluid density (ρ*) range and over a wide temperature (T*) range. The computed database consists of 17,212, 14,288, and 13,099 data points for self-diffusivity, shear viscosity, and thermal conductivity, respectively. The database is successfully validated against published simulation data. The above-mentioned transport properties are correlated using artificial neural networks (ANNs). Two modeling approaches were tested: a semiempirical formulation based on entropy scaling and an empirical formulation based on density and temperature as input variables. For the former, it was found that a unique formulation based on entropy scaling does not yield satisfactory results over the entire density range due to a divergent and incorrect scaling of the transport properties at low densities. For the latter empirical modeling approach, it was found that regularizing the data, e.g., modeling ρ*D* instead of D*, ln η* instead of η*, and ln κ* instead of κ*, as well as using the inverse of the temperature as an input feature, helps to ease the interpolation efforts of the artificial neural networks. The trained ANNs can model seen and unseen data over a wide range of density and temperature. Ultimately, the ANNs can be used alongside equations of state to regress effective force field parameters from volumetric and transport data.
Collapse
Affiliation(s)
- Gustavo Chaparro
- Department of Chemical Engineering,
Sargent Centre for Process Systems Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Erich A. Müller
- Department of Chemical Engineering,
Sargent Centre for Process Systems Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| |
Collapse
|
3
|
Arbabi S, Deuar P, Denys M, Bennacer R, Che Z, Theodorakis PE. Molecular dynamics simulation of the coalescence of surfactant-laden droplets. SOFT MATTER 2023; 19:8070-8080. [PMID: 37801284 DOI: 10.1039/d3sm01046e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
We investigate the coalescence of surfactant-laden water droplets by using several different surfactant types and a wide range of concentrations by means of a coarse-grained model obtained by the statistical associating fluid theory. Our results demonstrate in detail a universal mass transport mechanism of surfactant across many concentrations and several surfactant types during the process. Coalescence initiation is seen to occur via a single pinch due to aggregation of surface surfactant, and its remnants tend to become engulfed in part inside the forming bridge. Across the board we confirm the existence of an initial thermal regime with constant bridge width followed by a later inertial regime with bridge width scaling roughly as the square root of time, but see no evidence of an intermediate viscous regime. Coalescence becomes slower as surfactant concentration grows, and we see evidence of the appearance of a further slowdown of a different nature for several times the critical concentration. We anticipate that our results provide further insights in the mechanisms of coalescence of surfactant-laden droplets.
Collapse
Affiliation(s)
- Soheil Arbabi
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland.
| | - Piotr Deuar
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland.
| | - Mateusz Denys
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland.
| | - Rachid Bennacer
- Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS - Laboratoire de Mécanique Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Zhizhao Che
- State Key Laboratory of Engines, Tianjin University, 300350 Tianjin, China
| | | |
Collapse
|
4
|
Dynamic wetting of various liquids: Theoretical models, experiments, simulations and applications. Adv Colloid Interface Sci 2023; 313:102861. [PMID: 36842344 DOI: 10.1016/j.cis.2023.102861] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
Dynamic wetting is a ubiquitous phenomenon and frequently observed in our daily life, as exemplified by the famous lotus effect. It is also an interfacial process of upmost importance involving many cutting-edge applications and has hence received significantly increasing academic and industrial attention for several decades. However, we are still far away to completely understand and predict wetting dynamics for a given system due to the complexity of this dynamic process. The physics of moving contact lines is mainly ascribed to the full coupling with the solid surface on which the liquids contact, the atmosphere surrounding the liquids, and the physico-chemical characteristics of the liquids involved (small-molecule liquids, metal liquids, polymer liquids, and simulated liquids). Therefore, to deepen the understanding and efficiently harness wetting dynamics, we propose to review the major advances in the available literature. After an introduction providing a concise and general background on dynamic wetting, the main theories are presented and critically compared. Next, the dynamic wetting of various liquids ranging from small-molecule liquids to simulated liquids are systematically summarized, in which the new physical concepts (such as surface segregation, contact line fluctuations, etc.) are particularly highlighted. Subsequently, the related emerging applications are briefly presented in this review. Finally, some tentative suggestions and challenges are proposed with the aim to guide future developments.
Collapse
|
5
|
Nuthalapati K, Sheng YJ, Tsao HK. Anomalous interfacial dynamics of pendant droplets of N,N-dimethylformamide containing Silwet. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Wang P, He L, Wang Z. The effect of surface structure and arrangement on wettability of substrate surface. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Wang P, He L, Sun X, Lv H, Wang Z. Influence of Trapezoidal Cavity on the Wettability of Hydrophobic Surface: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3575-3584. [PMID: 33725445 DOI: 10.1021/acs.langmuir.0c03470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, the behaviors of water droplets on hydrophobic surfaces with different cavities are studied by molecular dynamics. Hydrophobic surfaces with different cavities are designed and simulated: trapezoidal cavity with the same lower width, upside down trapezoidal cavity with the same lower width, and so on. The results show that the influence of the upper width and the depth of the cavity on the contact state and contact angle is different for different trapezoidal cavities. For example, for the trapezoidal cavity with the same lower width, the upper width decreases with the increase of the cavity depth. In such a scenario, the upper width and depth of the cavity collectively promote the droplet transition into the Cassie state from the Wenzel state, but the effect of the upper width and depth on the contact angle is opposite, and the decrease of the upper width of the cavity is the dominant factor, which leads to a decrease in the contact angle. Then, we have built trapezoidal cavities with different base angles. The influence of different base angles on wettability is also discussed, and it is found that an increase in base angle can significantly delay the transition from Cassie state into the Wenzel state.
Collapse
Affiliation(s)
- Pengyu Wang
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
| | - Liang He
- Avic Xi'An Aircraft Industry (Group) Company Ltd., Xi'an 710089, China
| | - Xiaokun Sun
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
| | - Hongqing Lv
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
| | - Zhenqing Wang
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
8
|
Venzmer J. Superspreading - Has the mystery been unraveled? Adv Colloid Interface Sci 2021; 288:102343. [PMID: 33359962 DOI: 10.1016/j.cis.2020.102343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Superspreading is a fascinating phenomenon first observed about 30 years ago with dilute solutions of trisiloxane surfactants on hydrophobic substrates. Although many groups all over the world have contributed considerably to solve the scientific challenges involved, the reasons why only some trisiloxane surfactants promote superspreading, whereas others of similar chemical structure behave more like ordinary surfactants, has remained a mystery up to now. A number of original papers and reviews on superspreading have been published in recent years. The driving force still proposed today is most often Marangoni flow. This is, however, in contradiction with recent results showing that superspreading only starts after a surface tension gradient between apex and leading edge has been eliminated. From foam film experiments unrelated to wetting, there is evidence for "dangling" bilayers attached to the air/water interface only in case of the superspreading trisiloxane surfactants. By combining this and other published experimental findings, a new hypothesis of the mode of action is put forward: Advancing by "rolling action" at the leading edge, and the supply of surfactant by "unzippering" of the dangling bilayers all over the surface of the drop; this hypothesis even fulfills basic thermodynamic requirements.
Collapse
|
9
|
|
10
|
Molecular Dynamics Simulation of the Superspreading of Surfactant-Laden Droplets. A Review. FLUIDS 2019. [DOI: 10.3390/fluids4040176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Superspreading is the rapid and complete spreading of surfactant-laden droplets on hydrophobic substrates. This phenomenon has been studied for many decades by experiment, theory, and simulation, but it has been only recently that molecular-level simulation has provided significant insights into the underlying mechanisms of superspreading thanks to the development of accurate force-fields and the increase of computational capabilities. Here, we review the main advances in this area that have surfaced from Molecular Dynamics simulation of all-atom and coarse-grained models highlighting and contrasting the main results and discussing various elements of the proposed mechanisms for superspreading. We anticipate that this review will stimulate further research on the interpretation of experimental results and the design of surfactants for applications requiring efficient spreading, such as coating technology.
Collapse
|