1
|
Alhalili Z. Metal Oxides Nanoparticles: General Structural Description, Chemical, Physical, and Biological Synthesis Methods, Role in Pesticides and Heavy Metal Removal through Wastewater Treatment. Molecules 2023; 28:3086. [PMID: 37049850 PMCID: PMC10096196 DOI: 10.3390/molecules28073086] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Nanotechnology (NT) is now firmly established in both the private home and commercial markets. Due to its unique properties, NT has been fully applied within multiple sectors like pharmacy and medicine, as well as industries like chemical, electrical, food manufacturing, and military, besides other economic sectors. With the growing demand for environmental resources from an ever-growing world population, NT application is a very advanced new area in the environmental sector and offers several advantages. A novel template synthesis approach is being used for the promising metal oxide nanostructures preparation. Synthesis of template-assisted nanomaterials promotes a greener and more promising protocol compared to traditional synthesis methods such as sol-gel and hydrothermal synthesis, and endows products with desirable properties and applications. It provides a comprehensive general view of current developments in the areas of drinking water treatment, wastewater treatment, agriculture, and remediation. In the field of wastewater treatment, we focus on the adsorption of heavy metals and persistent substances and the improved photocatalytic decomposition of the most common wastewater pollutants. The drinking water treatment section covers enhanced pathogen disinfection and heavy metal removal, point-of-use treatment, and organic removal applications, including the latest advances in pesticide removal.
Collapse
Affiliation(s)
- Zahrah Alhalili
- Department of Chemistry, College of Science and Arts-Sajir, Shaqra University, Sahqra 17684, Saudi Arabia
| |
Collapse
|
2
|
Manjunatha L, Kumara Swamy B, Manjunatha K. Cadmium oxide nanoparticle modified carbon paste electrode sensor for sulfadiazine: A voltammetric study. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
3
|
Negrescu AM, Killian MS, Raghu SNV, Schmuki P, Mazare A, Cimpean A. Metal Oxide Nanoparticles: Review of Synthesis, Characterization and Biological Effects. J Funct Biomater 2022; 13:jfb13040274. [PMID: 36547533 PMCID: PMC9780975 DOI: 10.3390/jfb13040274] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
In the last few years, the progress made in the field of nanotechnology has allowed researchers to develop and synthesize nanosized materials with unique physicochemical characteristics, suitable for various biomedical applications. Amongst these nanomaterials, metal oxide nanoparticles (MONPs) have gained increasing interest due to their excellent properties, which to a great extent differ from their bulk counterpart. However, despite such positive advantages, a substantial body of literature reports on their cytotoxic effects, which are directly correlated to the nanoparticles' physicochemical properties, therefore, better control over the synthetic parameters will not only lead to favorable surface characteristics but may also increase biocompatibility and consequently lower cytotoxicity. Taking into consideration the enormous biomedical potential of MONPs, the present review will discuss the most recent developments in this field referring mainly to synthesis methods, physical and chemical characterization and biological effects, including the pro-regenerative and antitumor potentials as well as antibacterial activity. Moreover, the last section of the review will tackle the pressing issue of the toxic effects of MONPs on various tissues/organs and cell lines.
Collapse
Affiliation(s)
- Andreea Mariana Negrescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Manuela S. Killian
- Department of Chemistry and Biology, Chemistry and Structure of Novel Materials, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany
| | - Swathi N. V. Raghu
- Department of Chemistry and Biology, Chemistry and Structure of Novel Materials, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Palacky University, Listopadu 50A, 772 07 Olomouc, Czech Republic
- Chemistry Department, King Abdulaziz University, Jeddah 80203, Saudi Arabia
| | - Anca Mazare
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany
- Advanced Institute for Materials Research (AIMR), National University Corporation Tohoku University (TU), Sendai 980-8577, Japan
- Correspondence:
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
4
|
AR independent anticancer potential of enza against prostate cancer. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Potentially Bioactive Fungus Mediated Silver Nanoparticles. NANOMATERIALS 2021; 11:nano11123227. [PMID: 34947576 PMCID: PMC8706101 DOI: 10.3390/nano11123227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022]
Abstract
Fungal metabolites, proteins, and enzymes have been rich sources of therapeutics so far. Therefore, in this study, the hypha extract of a newly identified noble fungus (Alternaria sp. with NCBI Accession number: MT982648) was used to synthesize silver nanoparticles (F-AgNPs) to utilize against bacteria, fungi, and lung cancer. F-AgNPs were characterized by using physical techniques, including UV–visible spectroscopy, zeta potential, DLS, XRD, TEM, and HR-TEM. The particles were found to be polydispersed and quasi-spherical in shape under TEM. They had an average size of ~15 nm. The well dispersed particles were found to have consistent crystallinity with cubic phase geometry under XRD and HR-TEM. The presence of different functional groups on the surfaces of biosynthesized F-AgNPs was confirmed by FTIR. The particle distribution index was found to be 0.447 with a hydrodynamic diameter of ~47 d.nm, and the high value of zeta potential (−20.3 mV) revealed the stability of the nanoemulsion. These particles were found to be active against Staphylococcus aureus (multidrug resistance-MDR), Klebsiella pneumonia, Salmonella abony, and Escherichia coli (MDR) with MIC50 10.3, 12.5, 22.69, and 16.25 µg/mL, respectively. Particles also showed inhibition against fungal strains, including A. flavus, A. niger, T. viridens, and F. oxysporium. Their inhibition of biofilm formation by the same panel of bacteria was also found to be very promising and ranged from 16.66 to 64.81%. F-AgNPs also showed anticancer potential (IC50—21.6 µg/mL) with respect to methotrexate (IC50—17.7 µg/mL) against lung cancer cell line A549, and they did not result in any significant inhibition of the normal cell line BEAS-2. The particles were found to alter the mitochondrial membrane potential, thereby disturbing ATP synthesis and leading to high ROS formation, which are responsible for cell membrane damage and release of LDH, intracellular proteins, lipids, and DNA. A high level of ROS also elicits pro-inflammatory signaling cascades that lead to programmed cell death by either apoptosis or necrosis.
Collapse
|
6
|
Zabihi E, Arab-Bafrani Z, Hoseini SM, Mousavi E, Babaei A, Khalili M, Hashemi MM, Javid N. Fabrication of nano-decorated ZnO-fibrillar chitosan exhibiting a superior performance as a promising replacement for conventional ZnO. Carbohydr Polym 2021; 274:118639. [PMID: 34702461 DOI: 10.1016/j.carbpol.2021.118639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 09/01/2021] [Indexed: 12/27/2022]
Abstract
In this research, bioactive nano-hybrids based on the nano-fibrillar chitosan-ZnO (NF-CS-ZnO) were synthesized to diminish the toxicity of ZnO-NPs. The successful formation of nano-hybrids was confirmed by FT-IR, UV-Vis, and FE-SEM analyses, showing a uniform spherical ZnO-NPs with an average diameter of 20-30 nm, homogeneously dispersed on NF-CS. The obtained results demonstrated a remarkable antibacterial activity of NF-CS-ZnO-0.6 nano-hybrid against E. coli and S. aureus and, interestingly, no cytotoxic on normal cells (even at a high concentration of 100 μg/mL). Furthermore, NF-CS hybridization efficiently decreased the up-regulation in Cas3, Cas9, and Il6 of inspected fishes compared to the ZnO-NPs. Histopathological examination revealed hepatocyte necrosis in the fish exposed to ZnO-NPs and hyperemia exposed to NF-CS-ZnO-0.6 nano-hybrid. Finally, NF-CS efficiently improved the bio-safety and bactericidal activity of ZnO-NPs; therefore, NF-CS-ZnO nano-hybrid is prominently recommended as a talented low-toxicity antibacterial agent replacement of conventional ZnO-NPs for use in different applications.
Collapse
Affiliation(s)
- Erfan Zabihi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Zahra Arab-Bafrani
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Seyyed Morteza Hoseini
- Inland Waters Aquatics Resources Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization, Gorgan, Iran
| | - Elham Mousavi
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Babaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran.
| | - Mohsen Khalili
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Naeme Javid
- Department of Molecular Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
7
|
Menaceur M, Alleg S, Abdelouahed S, Belghit R. Structure, Electronic, Magnetic, and Elastic Properties of Cd0.75TM0.25O (TM = Mn, Fe, Co, and Ni) Compounds. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05746-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Kaveh S, Nami N, Norouzi B, Mirabi A. Biosynthesis of (MWCNTs)-COOH/CdO hybrid as an effective catalyst in the synthesis of pyrimidine-thione derivatives by water lily flower extract. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1841229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Shahrbano Kaveh
- Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - Navabeh Nami
- Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - Banafsheh Norouzi
- Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - Ali Mirabi
- Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| |
Collapse
|
9
|
Facile synthesis of new composite, Ag-Nps-loaded core/shell CdO/Co3O4 NPs, characterization and excellent performance in antibacterial activity. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01606-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Nasrullah M, Gul FZ, Hanif S, Mannan A, Naz S, Ali JS, Zia M. Green and Chemical Syntheses of CdO NPs: A Comparative Study for Yield Attributes, Biological Characteristics, and Toxicity Concerns. ACS OMEGA 2020; 5:5739-5747. [PMID: 32226852 PMCID: PMC7097907 DOI: 10.1021/acsomega.9b03769] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Metallic nanoparticles (NPs) have enormous applications due to their remarkable physical and chemical properties. The synthesis of NPs has been a matter of concern because chemical methods are toxic. On the contrary, biological methods are considered eco-friendly. To compare the toxicity and the environment-friendly nature of the synthesis methodologies, cadmium NPs were synthesized through chemical (Ch) (co-precipitation) and biological (plant extracts as reducing agent) methods. Cadmium nitrate was reduced with NaOH, while in the biological method, the Cd ions were reduced by Artemisia scoparia (As) and Cannabis sativa (Cs) extracts. X-ray diffraction (XRD) analysis confirmed the pure single-phase cubic structure of green and chemically synthesized CdO NPs except As-CdO NPs that were crystalline cum amorphous in nature. The size of nanoparticles was 84 nm (Cs-CdO NPs) and 42.2 nm (Ch-CdO NPs). The scanning electron microscope (SEM) images exhibited an irregular disklike morphology of nanoparticles that agglomerated more in the case of green synthesis. The antioxidant and antimicrobial potential of NPs revealed that chemically synthesized NPs have better antimicrobial capability, while the antioxidative activities were better for green-synthesized NPs. However, the low yield, high ion disassociation, and waste (unreacted metal) production in the green synthesis of CdO NPs increase the risk of contamination to biosphere. Both types of NPs did not affect the seed germination of Dodonaea viscosa. However, chemically synthesized NPs were less toxic on plant morphological response. The study concludes that the chemically synthesized CdO NPs have better morphology, significant antimicrobial activity, and less toxicity to plant species compared to green-synthesized NPs. Moreover, during the green synthesis, unreacted metals are drained, which causes contamination to the ecosystem.
Collapse
Affiliation(s)
- Madeeha Nasrullah
- Department
of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Faiza Zareen Gul
- Department
of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saad Hanif
- Department
of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Abdul Mannan
- Department
of Pharmacy, COMSATS University, Abbottabad 22060, Pakistan
| | - Sania Naz
- Department
of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Joham Sarfraz Ali
- Department
of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Zia
- Department
of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|