1
|
Iqbal MZ, Khizar A, Shaheen M, Afzal AM, Ahmad Z, Wabaidur SM, Al-Ammar EA. Pyridine 3,5-dicarboxylate-based metal-organic frameworks as an active electrode material for battery-supercapacitor hybrid energy storage devices. RSC Adv 2024; 14:2205-2213. [PMID: 38213966 PMCID: PMC10777277 DOI: 10.1039/d3ra07104a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024] Open
Abstract
Efficient energy storage and conversion is crucial for a sustainable society. Battery-supercapacitor hybrid energy storage devices offer a promising solution, bridging the gap between traditional batteries and supercapacitors. In this regard, metal-organic frameworks (MOFs) have emerged as the most versatile functional compounds owing to their captivating structural features, unique properties, and extensive diversity of applications in energy storage. MOF properties are governed by the structure and topological characteristics, which are influenced by the types of ligands and metal nodes. Herein, MOFs based on pyridine 3,5-dicarboxylate (PYDC) ligand in combination with copper and cobalt are electrochemically analyzed. Owing to the promising initial characterization of Cu-PYDC-MOF, a battery supercapacitor hybrid device was fabricated, comprising Cu-PYDC-MOF and activated carbon (AC) electrodes. The device showcased energy and power density of 17 W h kg -1 and 2550 W kg -1, respectively. Dunn's model was employed to gain deeper insights into the capacitive and diffusive contributions of the device. With their performance and versatility, the PYDC-based MOFs stand at the forefront of energy technology, ready to power a brighter future for upcoming generations.
Collapse
Affiliation(s)
- Muhammad Zahir Iqbal
- Renewable Energy Research Laboratory, Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Asma Khizar
- Renewable Energy Research Laboratory, Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Misbah Shaheen
- Renewable Energy Research Laboratory, Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Amir Muhammad Afzal
- Department of Physics, Riphah International University Lahore Campus Lahore Pakistan
| | - Zubair Ahmad
- School of Chemical Engineering, Yeungnam University 280 Daehak-ro Gyeongsan Gyeongbuk 38541 Republic of Korea
| | | | - Essam A Al-Ammar
- Department of Electrical Engineering, College of Engineering, King Saud University Riyadh 11421 Saudi Arabia
| |
Collapse
|
2
|
Yang X, Lv T, Qiu J. High Mass-Loading Biomass-Based Porous Carbon Electrodes for Supercapacitors: Review and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300336. [PMID: 36840663 DOI: 10.1002/smll.202300336] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/05/2023] [Indexed: 06/02/2023]
Abstract
Biomass-based porous carbon (BPC) with renewability and flexible nano/microstructure tunability has attracted increasing attention as efficient and cheap electrode materials for supercapacitors. To meet commercial needs, high mass-loading electrodes with high areal capacitance are preferred when designing supercapacitors. The increased mass percentage of active materials can effectively improve the energy density of supercapacitors. However, as the thickness of the electrode increases, it will face the following challenges including severely blocked ion transport channels, poor charging dynamics, poor electrode structural stability, and complex preparation processes. A bridge between theoretical research and practical applications of BPC electrodes for supercapacitors needs to be established. In this review, the advances of high mass-loading BPC electrodes for supercapacitors are summarized based on different biomass precursors. The key performance evaluation parameters of the high mass-loading electrodes are analyzed, and the performance influencing factors are systematically discussed, including specific surface area, pore structure, electrical conductivity, and surface functional groups. Subsequently, the promising optimization strategies for high mass-loading electrodes are summarized, including the structure regulation of electrode materials and the optimization of other supercapacitor components. Finally, the major challenges and opportunities of high mass-loading BPC electrodes in the future are discussed and outlined.
Collapse
Affiliation(s)
- Xiaomin Yang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ting Lv
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jieshan Qiu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, P. R. China
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
3
|
Lesbayev B, Auyelkhankyzy M, Ustayeva G, Yeleuov M, Rakhymzhan N, Maltay A, Maral Y. Recent advances: Biomass-derived porous carbon materials. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1016/j.sajce.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
4
|
Recent Research of NiCo2O4/Carbon Composites for Supercapacitors. SURFACES 2022. [DOI: 10.3390/surfaces5030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Supercapacitors have played an important role in electrochemical energy storage. Recently, researchers have found many effective methods to improve electrode materials with more robust performances through the increasing volume of scientific publications in this field. Though nickel cobaltite (NiCo2O4), as a promising electrode material, has substantially demonstrated potential properties for supercapacitors, its composites usually show much better performances than the pristine NiCo2O4. The combination of carbon-based materials and NiCo2O4 has been implemented recently due to the dual mechanisms for energy storage and the unique advantages of carbon materials. In this paper, we review the recent research on the hybrids of NiCo2O4 and carbon nanomaterials for supercapacitors. Typically, we focused on the reports related to the composites containing graphene (or reduced graphene oxide), carbon nanotubes, and amorphous carbon, as well as the major synthesis routes and electrochemical performances. Finally, the prospect for the future work is also discussed.
Collapse
|
5
|
Eskandari M, Shahbazi N, Marcos AV, Malekfar R, Taboada P. Facile MOF-derived NiCo2O4/r-GO nanocomposites for electrochemical energy storage applications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
Kaur M, Chand P, Anand H. Effect of different synthesis methods on morphology and electrochemical behavior of spinel NiCo2O4 nanostructures as electrode material for energy storage application. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Yuan L, Xin N, Liu Y, Shi W. In situ construction of multi-dimensional Co 3O 4/NiCo 2O 4 hierarchical flakes on self-supporting carbon substrate with ultra-high capacitance for hybrid supercapacitors. J Colloid Interface Sci 2021; 599:158-167. [PMID: 33933790 DOI: 10.1016/j.jcis.2021.04.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Research on environmentally friendly energy storage devices is an important strategy to solve the energy crisis and environmental pollution. Herein, a novel self-supporting electrode based on multi-dimensional Co3O4/NiCo2O4 hierarchical flakes coating on graphene/carbon sphere (rGO/CS) conductive substrate is reasonably designed. Firstly, a simple hydrothermal method is used to synthesize NiCo2O4 with both flake and nanoneedle morphology on the rGO/CS substrate. Subsequently, Co3O4/NiCo2O4@rGO/CS is obtained by in-situ growth of metal organic frameworks polyhedrons on the surface of NiCo2O4 flakes followed by calcination. In the unique structure, benefitting from the synergy between the substrate and multi-element transition metal oxides, the integrated film shows good conductivity, high specific surface area and abundant active sites. Thus, the binder-free electrode exhibits an ultra-high specific capacitance of 3876.6 F g-1 (538.4 mA h g-1) at 1 A g-1. A hybrid supercapacitor is assembled with activated carbon as the negative electrode and Co3O4/NiCo2O4@rGO/CS as the positive electrode, the device shows a highest energy density of 56.5 Wh kg-1 at a power density of 800 W kg-1. After 6000 charge-discharge cycles, 92.5% of the initial capacitance can be still maintained, indicating its good application prospects in energy storage materials.
Collapse
Affiliation(s)
- Lei Yuan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Na Xin
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yu Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
8
|
Sharifi S, Rahimi K, Yazdani A. Highly improved supercapacitance properties of MnFe 2O 4 nanoparticles by MoS 2 nanosheets. Sci Rep 2021; 11:8378. [PMID: 33864006 PMCID: PMC8052405 DOI: 10.1038/s41598-021-87823-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/05/2021] [Indexed: 11/09/2022] Open
Abstract
Manganese ferrite (MnFe2O4) nanoparticles were synthesized via a hydrothermal method and combined with exfoliated MoS2 nanosheets, and the nanocomposite was studied as a supercapacitor. X-ray diffractometry and Raman spectroscopy confirmed the crystalline structures and structural characteristics of the nanocomposite. Transmission electron microscopy images showed the uniform size distribution of MnFe2O4 nanoparticles (~ 13 nm) on few-layer MoS2 nanosheets. UV-visible absorption photospectrometry indicated a decrease in the bandgap of MnFe2O4 by MoS2, resulting in a higher conductivity that is suitable for capacitance. Electrochemical tests showed that the incorporation of MoS2 nanosheets largely increased the specific capacitance of MnFe2O4 from 600 to 2093 F/g (with the corresponding energy density and power density of 46.51 Wh/kg and 213.64 W/kg, respectively) at 1 A/g, and led to better charge-discharge cycling stability. We also demonstrated a real-world application of the MnFe2O4/MoS2 nanocomposite in a two-cell asymmetric supercapacitor setup. A density functional theory study was also performed on the MnFe2O4/MoS2 interface to analyze how a MoS2 monolayer can enhance the electronic properties of MnFe2O4 towards a higher specific capacitance.
Collapse
Affiliation(s)
- Samira Sharifi
- Condensed Matter Physics Group, Department of Basic Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Avenue, Tehran, Iran
| | - Kourosh Rahimi
- Condensed Matter Physics Group, Department of Basic Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Avenue, Tehran, Iran
| | - Ahmad Yazdani
- Condensed Matter Physics Group, Department of Basic Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Avenue, Tehran, Iran.
| |
Collapse
|
9
|
Wan Z, Bai X, Mo H, Yang J, Wang Z, Zhou L. Multi-porous NiAg-doped Pd alloy nanoparticles immobilized on reduced graphene oxide/CoMoO4 composites as a highly active electrocatalyst for direct alcohol fuel cell. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Nickel Cobaltite Functionalized Silver Doped Carbon Xerogels as Efficient Electrode Materials for High Performance Symmetric Supercapacitor. MATERIALS 2020; 13:ma13214906. [PMID: 33142879 PMCID: PMC7663538 DOI: 10.3390/ma13214906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 11/30/2022]
Abstract
Introducing new inexpensive materials for supercapacitors application with high energy density and stability, is the current research challenge. In this work, Silver doped carbon xerogels have been synthesized via a simple sol-gel method. The silver doped carbon xerogels are further surface functionalized with different loadings of nickel cobaltite (1 wt.%, 5 wt.%, and 10 wt.%) using a facile impregnation process. The morphology and textural properties of the obtained composites are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen physisorption analysis. The silver doped carbon xerogels display a higher surface area and larger mesopore volume compared to the un-doped carbon xerogels and hierarchically porous structure is obtained for all materials. The hybrid composites have been utilized as electrode materials for symmetric supercapacitors in 6 M KOH electrolyte. Among all the hybrid composites, silver doped carbon xerogel functionalized with 1 wt.% nickel cobaltite (NiCo1/Ag-CX) shows the best supercapacitor performance: high specific capacitance (368 F g−1 at 0.1 A g−1), low equivalent series resistance (1.9 Ω), high rate capability (99% capacitance retention after 2000 cycles at 1 A g−1), and high energy and power densities (50 Wh/Kg, 200 W/Kg at 0.1 A g−1). It is found that the specific capacitance does not only depend on surface area, but also on others factors such as particle size, uniform particle distribution, micro-mesoporous structure, which contribute to abundant active sites and fast charge, and ion transfer rates between the electrolyte and the active sites.
Collapse
|
11
|
Sharifi S, Yazdani A, Rahimi K. Incremental substitution of Ni with Mn in NiFe 2O 4 to largely enhance its supercapacitance properties. Sci Rep 2020; 10:10916. [PMID: 32616779 PMCID: PMC7331705 DOI: 10.1038/s41598-020-67802-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/12/2020] [Indexed: 11/08/2022] Open
Abstract
By using a facile hydrothermal method, we synthesized Ni1-xMnxFe2O4 nanoparticles as supercapacitor electrode materials and studied how the incremental substitution of Ni with Mn would affect their structural, electronic, and electrochemical properties. X-ray diffractometry confirmed the single-phase spinel structure of the nanoparticles. Raman spectroscopy showed the conversion of the inverse structure of NiFe2O4 to the almost normal structure of MnFe2O4. Field-emission scanning electron microscopy showed the spherical shape of the obtained nanoparticles with a size in the range of 20-30 nm. Optical bandgaps were found to decrease as the content of Mn increased. Electrochemical characterizations of the samples indicated the excellent performance and the desirable cycling stability of the prepared nanoparticles for supercapacitors. In particular, the specific capacitance of the prepared Ni1-xMnxFe2O4 nanoparticles was found to increase as the content of Mn increased, reaching the highest specific capacitance of 1,221 F/g for MnFe2O4 nanoparticles at the current density of 0.5 A/g with the corresponding power density of 473.96 W/kg and the energy density of 88.16 Wh/kg. We also demonstrated the real-world application of the prepared MnFe2O4 nanoparticles. We performed also a DFT study to verify the changes in the geometrical and electronic properties that could affect the electrochemical performance.
Collapse
Affiliation(s)
- Samira Sharifi
- Condensed Matter Group, Department of Basic Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Avenue, Tehran, Iran
| | - Ahmad Yazdani
- Condensed Matter Group, Department of Basic Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Avenue, Tehran, Iran.
| | - Kourosh Rahimi
- Condensed Matter Group, Department of Basic Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Avenue, Tehran, Iran
| |
Collapse
|
12
|
Eskandari M, Najafi Liavali M, Malekfar R, Taboada P. Investigation of Optical Properties of Polycarbonate/TiO2/ZnO Nanocomposite: Experimental and DFT Calculations. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01644-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|