1
|
Kato H, Nakamura A. Novel Colloidal Dispersing Concept in Aqueous Media for Preparation by Wet-Jet Milling Dispersing Method. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:80. [PMID: 36615991 PMCID: PMC9824523 DOI: 10.3390/nano13010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Dispersing particles in a liquid phase is significant for producing various functional nano/bio applications. The wet-jet milling method has been gaining attention as an attractive dispersing method in the preparation of soft material suspensions. This is because the main driving force of dispersion by the wet-jet milling method is the shear force, which is weaker than that it is in the ultrasonication dispersing method. In the wet-jet milling method, the pressure of the narrow channel which the liquid is passes through and the number of passes are used as the control parameters for dispersing the particles. However, the values of the pressure depend on the size (diameter and length) of the narrow channel, thus, it is not a commonly used dispersing parameter in dispersing by wet-jet milling to set the dispersing condition by various wet-jet milling instruments. In addition, wet-jet milling users must optimize the dispersing conditions such as the pressure and number of passes in the narrow channel, therefore, a simple prediction/optimization method of the dispersing size by the wet-jet milling method is desired. In this study, we established a novel colloidal dispersing concept, the dispersing energy input based on a calorimetric idea, for particle suspension preparation using the wet-jet milling method. The dispersing energy input by wet-jet milling was quantitatively calculated under various conditions during the dispersing by wet-jet milling, and then, the dispersing size of the particles was easily predicted/optimized. We demonstrated the usability of the concept by preparing aqueous suspensions of calcium carbonate (CaCO3) particles with various surfactants using the wet-jet milling method. Based on the established concept, in a case study on dispersing CaCO3, we found that changes in the micelle sizes of the surfactants played a role in wet-jet milling. The novel idea of the representation of energy input makes it possible to estimate the appropriate condition of the dispersing process by wet-jet milling to control the size of particles.
Collapse
|
2
|
Zhu J, Da C, Chen J, Johnston KP. Ultrastable N 2/Water Foams Stabilized by Dilute Nanoparticles and a Surfactant at High Salinity and High Pressure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5392-5403. [PMID: 35439013 DOI: 10.1021/acs.langmuir.1c03347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rapid development of unconventional oil and gas resources presents challenges for foam flooding for reservoirs with high salinity and high heterogeneity at elevated temperatures. In this study, hydrophilic anionic sulfonate-modified nanoparticles (NPs) exhibited a synergistic effect with a cationic surfactant in stabilizing N2/water foam in the presence of concentrated divalent ions from ambient temperature up to 70 °C. With low concentrations of both the sulfonated NPs (SNPs) and cationic surfactant, the foams remained stable for 4 days at 50 °C and atmospheric pressure, while the surfactant-stabilized foams collapsed completely in 1 day. This stability mechanism of foams by the SNPs and cationic surfactant is described in terms of phase behavior, bulk shear rheology of the aqueous phase, and the dilational modulus of the gas-brine interface. The high surface elastic dilational modulus E' observed upon addition of the SNP provided stability against coarsening according to the Gibbs criteria. The cryo-SEM images also showed the compact bubble structure of foams provided by the SNPs. Consequently, very minor changes in the foam bubble size were observed at 208 bar (3000 psi) and 50 °C for up to 48 h with only 0.1 wt % or 0.3 wt % SNPs and 0.01 wt % Arquad 12-50, indicating excellent foam stability. The ability of the surfactant and NPs to stabilize foams at low concentrations broadens the application of foams in subsurface reservoirs at high temperatures and salinities.
Collapse
Affiliation(s)
- Jingyi Zhu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chang Da
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jessie Chen
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Keith P Johnston
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Emulsions stabilized by a CO2 - switchable surfactant based on rigid rosin with or without charged nanoparticles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Huang Y, Xiang X, Luo X, Li X, Yu X, Li S. Study on the emulsification and oxidative stability of ovalbumin-pectin-pumpkin seed oil emulsions using ovalbumin solution prepared by ultrasound. ULTRASONICS SONOCHEMISTRY 2021; 78:105717. [PMID: 34509956 PMCID: PMC8441206 DOI: 10.1016/j.ultsonch.2021.105717] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 05/07/2023]
Abstract
Pumpkin seed oil (PSO), which is a valuable compound with high nutritional value used for the prevention of various chronic diseases, is prone to oxidation. In this work, small and uniform (su) ovalbumin (OVA) and pectin (PEC) were used to stabilize PSO in the form of an emulsion. The results showed that suOVA-PEC-PSO emulsion with a droplet size of 9.82 ± 0.05 μm was successfully self-assembled from PSO, PEC, and suOVA solution (with a droplet size of 230.13 ± 14.10 nm) treated with 300 W ultrasound, owing to the formation of a more stable interfacial film on the surface of droplets. The interfacial, rheological, emulsifying, and antioxidant properties of the suOVA-PES-PSO emulsions were excellent, owing to the synergistic effects between PEC and suOVA solution. Moreover, the physical stability of the suOVA-PEC-PSO emulsions to salt stress, a freeze-thaw cycle, and heat treatment was also increased and the oxidation of linolenic acid was notably delayed. These results have extended the food-related applications of OVA and PSO, and provide a promising foundation for further exploration of the self-assembly of composite emulsions by small and uniform proteins.
Collapse
Affiliation(s)
- Yu Huang
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology/School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xiaole Xiang
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China
| | - Xiaoying Luo
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology/School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 102488, China.
| | - Xiongwei Yu
- Wuhan Xudong Food Co., Ltd., Wuhan 430000, China
| | - Shugang Li
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology/School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China; Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
5
|
Sharkawy A, Barreiro MF, Rodrigues AE. New Pickering emulsions stabilized with chitosan/collagen peptides nanoparticles: Synthesis, characterization and tracking of the nanoparticles after skin application. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Correia EL, Brown N, Razavi S. Janus Particles at Fluid Interfaces: Stability and Interfacial Rheology. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:374. [PMID: 33540620 PMCID: PMC7913064 DOI: 10.3390/nano11020374] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
The use of the Janus motif in colloidal particles, i.e., anisotropic surface properties on opposite faces, has gained significant attention in the bottom-up assembly of novel functional structures, design of active nanomotors, biological sensing and imaging, and polymer blend compatibilization. This review is focused on the behavior of Janus particles in interfacial systems, such as particle-stabilized (i.e., Pickering) emulsions and foams, where stabilization is achieved through the binding of particles to fluid interfaces. In many such applications, the interface could be subjected to deformations, producing compression and shear stresses. Besides the physicochemical properties of the particle, their behavior under flow will also impact the performance of the resulting system. This review article provides a synopsis of interfacial stability and rheology in particle-laden interfaces to highlight the role of the Janus motif, and how particle anisotropy affects interfacial mechanics.
Collapse
Affiliation(s)
| | | | - Sepideh Razavi
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, 100 E. Boyd Street, Norman, OK 73019, USA; (E.L.C.); (N.B.)
| |
Collapse
|
7
|
Singh H, Ray D, Kumar S, Takata SI, Aswal VK, Seto H. Probing the adsorption of nonionic micelles on different-sized nanoparticles by scattering techniques. Phys Rev E 2021; 102:062601. [PMID: 33465948 DOI: 10.1103/physreve.102.062601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/11/2020] [Indexed: 11/07/2022]
Abstract
The interaction of nanoparticles with surfactants is extensively used in a wide range of applications from enhancing colloidal stability to phase separation processes as well as in the synthesis of noble functional materials. The interaction is highly specific depending on the charged nature of the surfactant. In the case of nonionic surfactants, the micelles adsorb on the surface of nanoparticles. The adsorption of nonionic surfactant C12E10 as a function of surfactant concentration for two different sizes of anionic silica nanoparticles (16 and 27 nm) has been examined using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). SANS measurements have been carried out under different contrast-matched conditions, where nanoparticles, as well as surfactant micelles, have been contrast-matched to the solvent. The adsorption of micelles is determined from the contrast-matched condition of silica nanoparticles with the solvent. SANS data under surfactant contrast-matched condition suggest that there is no modification in the structure and/or interaction of the silica nanoparticles in presence of nonionic micelles. The adsorption of micelles on nanoparticles is found to follow an exponential behavior with respect to the surfactant concentration. These results are consistent with the variation of hydrodynamic size of nanoparticle-surfactant system in DLS. The study on different-sized nanoparticles shows that the lower curvature enhances the packing fraction whereas the loss of surface-to-volume ratio suppresses the fraction of adsorbed micelles with the increase in the nanoparticle size. The adsorption coefficient has higher value for the larger size of the nanoparticles. In the mixed system of two sizes of nanoparticles, no preferential selectivity of micelle adsorption is observed.
Collapse
Affiliation(s)
- Himanshi Singh
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.,Homi Bhabha National Institute, Mumbai 400 094, India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Shin-Ichi Takata
- J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.,Homi Bhabha National Institute, Mumbai 400 094, India
| | - Hideki Seto
- J-PARC Center, High Energy Accelerator Research Organization, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
8
|
INVESTIGATION OF THE EMULSIFYING CAPACITY OF SNACK PASTE BASED ON FATLESS COTTAGE CHEESE. EUREKA: LIFE SCIENCES 2020. [DOI: 10.21303/2504-5695.2020.001104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Technological parameters of the process of refined deodorized sunflower oil emulsification in a protein base – fatless cottage cheese for making a snack paste are presented. The expedience of introducing a melting salt – sodium citrate as a main emulsifier and its concentration are substantiated.
It has been established, that with increasing a content of sodium citrate the emulsifying capacity of a protein base grows, and at its concentration 2.0 %, reaches the maximal value – 50 vol un of oil. At a further increase of the sodium citrate concentration the emulsifying capacity decreases probably as a result of an abrupt рН growth.
It has been proved, that at adding dry skimmed milk in amount 4.0±0.5 % as an additional emulsifier in the protein base of a snack paste at 40 % of fatless cottage cheese in the recipe an increase of its emulsifying capacity by 6 vol un of oil, probably as a result of the growth of surface active substances, takes place.
The temperature influence on the viscosity of the snack paste protein base has been investigated and the rational concentration of refined deodorized sunflower oil has been determined as 25±2 %.
It has been established, that the temperature decrease from 50 to 30 °С and content increase of sunflower oil in the protein base from 25±2 % to 30±2 % result in the essential viscosity increase that may worsen emulsifying conditions.
It has been proved, that emulsion stability that is an important parameter for a snack paste of the emulsion type with a long storage term depends on content of main protein-containing components, sunflower oil and active acidity of the protein base.
The obtained results have a practical importance for determining the rational concentration of refined deodorized oil and sodium citrate that provides more necessary emulsifying capacity of the protein base and emulsion stability at storage in the technology of snack pastes, based on fatless cottage cheese
Collapse
|