1
|
Sedenkova KN, Leschukov DN, Grishin YK, Zefirov NA, Gracheva YA, Skvortsov DA, Hrytseniuk YS, Vasilyeva LA, Spirkova EA, Shevtsov PN, Shevtsova EF, Lukmanova AR, Spiridonov VV, Markova AA, Nguyen MT, Shtil AA, Zefirova ON, Yaroslavov AA, Milaeva ER, Averina EB. Verubulin (Azixa) Analogues with Increased Saturation: Synthesis, SAR and Encapsulation in Biocompatible Nanocontainers Based on Ca 2+ or Mg 2+ Cross-Linked Alginate. Pharmaceuticals (Basel) 2023; 16:1499. [PMID: 37895970 PMCID: PMC10610134 DOI: 10.3390/ph16101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Tubulin-targeting agents attract undiminished attention as promising compounds for the design of anti-cancer drugs. Verubulin is a potent tubulin polymerization inhibitor, binding to colchicine-binding sites. In the present work, a series of verubulin analogues containing a cyclohexane or cycloheptane ring 1,2-annulated with pyrimidine moiety and various substituents in positions 2 and 4 of pyrimidine were obtained and their cytotoxicity towards cancer and non-cancerous cell lines was estimated. The investigated compounds revealed activity against various cancer cell lines with IC50 down to 1-4 nM. According to fluorescent microscopy data, compounds that showed cytotoxicity in the MTT test disrupt the normal cytoskeleton of the cell in a pattern similar to that for combretastatin A-4. The hit compound (N-(4-methoxyphenyl)-N,2-dimethyl-5,6,7,8-tetrahydroquinazolin-4-amine) was encapsulated in biocompatible nanocontainers based on Ca2+ or Mg2+ cross-linked alginate and it was demonstrated that its cytotoxic activity was preserved after encapsulation.
Collapse
Affiliation(s)
- Kseniya N. Sedenkova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Denis N. Leschukov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Yuri K. Grishin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Nikolay A. Zefirov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Yulia A. Gracheva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Dmitry A. Skvortsov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Yanislav S. Hrytseniuk
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Lilja A. Vasilyeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Elena A. Spirkova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS), 142432 Chernogolovka, Russia; (E.A.S.); (P.N.S.); (E.F.S.)
| | - Pavel N. Shevtsov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS), 142432 Chernogolovka, Russia; (E.A.S.); (P.N.S.); (E.F.S.)
| | - Elena F. Shevtsova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS), 142432 Chernogolovka, Russia; (E.A.S.); (P.N.S.); (E.F.S.)
| | - Alina R. Lukmanova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Vasily V. Spiridonov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Alina A. Markova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.M.); (M.T.N.)
| | - Minh T. Nguyen
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.M.); (M.T.N.)
| | - Alexander A. Shtil
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
- Institute of Cyber Intelligence Systems, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Olga N. Zefirova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Alexander A. Yaroslavov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Elena R. Milaeva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Elena B. Averina
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| |
Collapse
|
2
|
Orlova MA, Trofimova TP, Zolotova AS, Larenkov AA, Orlov AP, Borodkov AA, Spiridonov VV. Radiation stability of carboxymethylcellulose microgels cross-linked by copper ions. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3681-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Spiridonov VV, Sadovnikov KS, Vasilenko DA, Sedenkova KN, Lukmanova AR, Markova AA, Shibaeva AV, Bolshakova AV, Karlov SS, Averina EB, Yaroslavov AA. Synthesis and evaluation of the anticancer activity of the water-dispersible complexes of 4-acylaminoisoxazole derivative with biocompatible nanocontainers based on Ca2+ (Mg2+) cross-linked alginate. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Orlova MA, Spiridonov VV, Badun GA, Trofimova TP, Orlov AP, Zolotova AS, Priselkova AB, Aleshin GY, Chernysheva MG, Yaroslavov AA, Kalmykov SN. In vivo behavior of carboxymethylcellulose based microgels containing 67Cu. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Orlova M, Spiridonov V, Orlov A, Zolotova N, Lupatov A, Trofimova T, Kalmykov S, Yaroslavov A. Complexes of сarboxymethylcellulose with Cu2+-ions as a prototype of antitumor agent. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Li H, Li X, Jain P, Peng H, Rahimi K, Singh S, Pich A. Dual-Degradable Biohybrid Microgels by Direct Cross-Linking of Chitosan and Dextran Using Azide-Alkyne Cycloaddition. Biomacromolecules 2020; 21:4933-4944. [PMID: 33210916 DOI: 10.1021/acs.biomac.0c01158] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this work, biocompatible and degradable biohybrid microgels based on chitosan and dextran were synthesized for drug delivery applications. Two kinds of bio-based building blocks, alkyne-modified chitosan and azide-modified dextran, were used to fabricate microgels via single-step cross-linking in water-in-oil emulsions. The cross-linking was initiated in the presence of copper(II) without the use of any extra cross-linkers. A series of pH-responsive and degradable microgels were successfully synthesized by varying the degree of cross-links. The microgels were characterized using 1H NMR and FTIR spectroscopy which proved the successful cross-linking of alkyne-modified chitosan and azide-modified dextran by copper(II)-mediated click reaction. The obtained microgels exhibit polyampholyte character and can carry positive or negative charges in aqueous solutions at different pH values. Biodegradability of microgels was shown at pH 9 or in the presence of Dextranase due to the hydrolysis of carbonate esters in the microgels or 1,6-α-glucosidic linkages in dextran structure, respectively. Furthermore, the microgels could encapsulate vancomycin hydrochloride (VM), an antibiotic, with a high loading of approximately 93.67% via electrostatic interactions. The payload could be released in the presence of Dextranase or under an alkaline environment, making the microgels potential candidates for drug delivery, such as colon-specific drug release.
Collapse
Affiliation(s)
- Helin Li
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Xin Li
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Puja Jain
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Huan Peng
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Khosrow Rahimi
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Smriti Singh
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52056 Aachen, Germany.,Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|