1
|
Taleb MA, Kumar R, Barakat MA, Almeelbi T, Seliem MK, Ahmad A. Recent advances in heavy metals uptake by tailored silica-based adsorbents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177093. [PMID: 39477122 DOI: 10.1016/j.scitotenv.2024.177093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/16/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
In the last decade, numerous designed adsorbent materials like metal-organic frameworks (MOFs), covalent organic frameworks (COF), carbon nanotubes (CNTs), etc. have been developed and investigated for metal ions extraction applications in the contaminated aquatic environment. These materials are facing the problems associated with large-scale production, cost, stability, and reusable. Conventional adsorption like carbon and silica is still valuable and is in use for industrial applications. In the last decade, silica has gone through a lot of alteration and modification to enhance its efficiency for heavy metal adsorption. In this review, the tailoring of the silica properties by surface functionalization or developing new hybrid composites for the scavenging of the heavy have been summarized. Silica functionalization with various organic functional groups, composites like silica/polymers, silica/metal oxide, silica aerogels, etc., has been explored. Moreover, interpretations of the effective metal uptake mechanisms associated with metal ions adsorption onto silica adsorbents are also investigated. Overall, the review offers comprehensive insights into the interface between metal ions and silica-based materials.
Collapse
Affiliation(s)
- Md Abu Taleb
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rajeev Kumar
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - M A Barakat
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - T Almeelbi
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Moaaz K Seliem
- Faculty of Earth Science, Beni-Suef University, 62511, Egypt
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
2
|
Zoroufchi Benis K. Transforming drinking water treatment residuals into efficient adsorbents: A review of activation and modification methods. ENVIRONMENTAL RESEARCH 2024; 262:119893. [PMID: 39216740 DOI: 10.1016/j.envres.2024.119893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The management of drinking water treatment residuals (DWTRs) poses significant environmental and economic challenges for water treatment facilities; however, these residues have considerable potential as effective adsorbents for pollutant removal. The objectives of this review are to evaluate research conducted from 2015 to 2024 on treatment and modification techniques aimed at enhancing DWTRs' efficacy as adsorbents, analyze the influence of preparation methods on DWTRs performance, evaluate DWTRs adsorbents for different pollutants, and discuss the limitations and challenges in DWTRs applications. The review addresses the knowledge gap by detailed analysis of these advanced modification methods, which have not been extensively reviewed before, and their direct impact on the physicochemical properties and adsorption performance of DWTRs. The review explores various methods including thermal treatment, chemical activation, granulation, pelletization, and the development of composite materials. Key findings indicate that thermal treatment significantly increases surface area and porosity, while chemical activation introduces functional groups that enhance adsorption capacity. Composite DWTRs, incorporating metals, organic compounds, or magnetic properties, demonstrate superior performance in adsorbing diverse contaminants such as dyes and heavy metals. Despite these advancements, challenges remain, particularly in reporting the life cycles and costs of the treated and modified DWTRs and the regeneration of spent adsorbents. The review highlights the importance of optimizing preparation techniques to enhance the physicochemical properties and adsorption performance of DWTRs. By synthesizing existing knowledge and identifying key areas for future research, this review aims to advance sustainable practices in water treatment and resource recovery, aligning with global sustainability goals.
Collapse
Affiliation(s)
- Khaled Zoroufchi Benis
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
3
|
Chen A, Wang X, Hu R, Wei X, Lv L, Shen T, Wang J, Xing S, Yuan C. Construction of 3D network aluminum sludge-based hydrogel beads: combination of macroization, amino functionalization, and resource utilization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12052-12070. [PMID: 38225498 DOI: 10.1007/s11356-024-31825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
An aluminum sludge-based composite material was constructed against the problems of phosphorus pollution and the waste of aluminum sludge resources. Utilizing metal Ce doping and hydrogel microbeads with pore preparation, the adsorption performance of the original sludge was improved. Meanwhile, the macroscopic body was constructed, and on this basis, polyethyleneimine (PEI) was introduced to complete the amino functionalization further to enhance the adsorption of phosphorus by the adsorbent, and NH-CeAIS-10 microbeads were successfully prepared. In adsorption, microbeads with larger specific surface area and richer functional groups are better choice compared to original sludge. The results of SEM, BET, FT-IR, and XPS analyses indicate that the adsorption of phosphorus by the microbeads is mainly achieved through electrostatic interactions, ligand exchange, and the formation of inner-sphere complexes. According to the Langmuir model, the maximum phosphorus adsorption capacity of NH-CeAIS-10 was 29.56 mg g-1, which was four times higher compared to native aluminum sludge. This also confirms the significant enhancement of phosphorus adsorption through the modification of aluminum sludge. Besides, in dynamic adsorption column experiments, the material exhibited up to 99% removal in simulated wastewater for up to 30 days, demonstrating the great adsorption potential of NH-CeAIS-10 in engineering applications.
Collapse
Affiliation(s)
- Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, 710054, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China.
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China.
| | - Xinyuan Wang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Ruirui Hu
- Shaanxi Hydrotransformer Technology Co., Ltd, Xi'an, China
| | - Xiao Wei
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Luxue Lv
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Tong Shen
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Jinzhou Wang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Shanshan Xing
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Chunbo Yuan
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| |
Collapse
|
4
|
Sharma S, Ahammed MM. Application of modified water treatment residuals in water and wastewater treatment: A review. Heliyon 2023; 9:e15796. [PMID: 37305496 PMCID: PMC10256853 DOI: 10.1016/j.heliyon.2023.e15796] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 06/13/2023] Open
Abstract
Large quantities of sludge known as water treatment residuals (WTRs) are generated from water treatment facilities across the world. Various attempts have been made to reuse these residuals. Among the different applications of WTRs, their reuse in water and wastewater treatment has received more attention. However, direct application of raw WTRs is associated with some limitations. In the last decade, in order to improve their characteristics, numerous investigators have modified WTRs by different methods. This paper reviews the different methods applied to WTRs to enhance their characteristics. The effects of these modifications on their characteristics are explained. The applications of modified WTRs as a filtration/adsorption medium for treating textile/dye wastewater, groundwater containing different anionic and cationic pollutants, storm water runoff, and as a substrate in constructed wetlands are presented in detail. Future research needs are highlighted. The review clearly indicates the potential of different modification methods to improve the removal of a variety of pollutants by WTRs from water and wastewater.
Collapse
|
5
|
Huang C, Yuan N, He X, Wang C. Ceramsite made from drinking water treatment residue for water treatment: A critical review in association with typical ceramsite making. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:117000. [PMID: 36502704 DOI: 10.1016/j.jenvman.2022.117000] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The use of ceramsite to construct filtration systems (e.g., biofilters) is a common method for water treatment. To promote such applications, the development of low-cost, high-performance, and environmentally friendly ceramsites has received increasing attention from scientists, and a critical step in the development is the preparation of raw materials. As an inevitable and non-hazardous by-product during potable water production, drinking water treatment residue (DWTR) is typically recycled to make water treatment ceramsite to promote recycling in filtration systems. This study aims to bridge the knowledge gap regarding DWTR in making ceramsites for water treatment. The results suggest that the fabrication methods for DWTR-based ceramsite can be generally classified into sintering and non-sintering procedures. For the sintering method, owing to the heterogeneous properties (especially aluminum, iron, and calcium), DWTR has been applied as various sub-ingredients for raw materials preparations. In contrast, for the non-sintering method, DWTR is commonly applied as the main ingredient, and natural curing, physical crosslinking, and thermal treatment methods have been typically adopted to make ceramsite. However, DWTR-based ceramsites tend to have a high adsorption capability and favorable microbial effects to control different kinds of pollution (e.g., phosphorus, nitrogen, and organic matter). Future work is typically recommended to thoroughly evaluate the performance of DWTR-based ceramsite-constructed filtration systems to control water pollution concerning the making procedures, the potential to control pollution, the stability, and the safety of raw DWTR-based ceramsite, providing systematic information to design more proper planning for beneficial recycling.
Collapse
Affiliation(s)
- Chenghao Huang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nannan Yuan
- School of Electronic Information, Nanjing Vocational College of Information Technology, Nanjing, China
| | - Xiaosong He
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
6
|
Effect of operating variables on functions of sodium alginate granules based on drinking water treatment residues. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Razmgar K, Nasiraee M. Polyvinyl alcohol
‐based membranes for filtration of aqueous solutions: A comprehensive review. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kourosh Razmgar
- College of Science, Health, Engineering and Education Murdoch University Perth Western Australia Australia
| | - Mohammad Nasiraee
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
8
|
Li S, Zeng W, Ren Z, Jia Z, Wu G, Peng Y. Performance difference of hydrated phosphorophilic metal oxides in modifying diatomite and recovering phosphorus from wastewater. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Application of Alum Sludge in Wastewater Treatment Processes: “Science” of Reuse and Reclamation Pathways. Processes (Basel) 2021. [DOI: 10.3390/pr9040612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Alum sludge (AlS) refers to the inevitable by-product generated during the drinking water purification process, where Al-salt is used as a coagulant in the water industry. It has long been treated as “waste”, while landfill is its major final disposal destination. In fact, AlS is an underutilized material with huge potential for beneficial reuse as a raw material in various wastewater treatment processes. In the last two decades, intensive studies have been conducted worldwide to explore the “science” and practical application of AlS. This paper focuses on the recent developments in the use of AlS that show its strong potential for reuse in wastewater treatment processes. In particular, the review covers the key “science” of the nature and mechanisms of AlS, revealing why AlS has the potential to be a value-added material. In addition, the future focus of research towards the widespread application of AlS as a raw material/product in commercial markets is suggested, which expands the scope for AlS research and development.
Collapse
|
10
|
Wang M, Bai S, Wang X. Enhanced removal of heavy metals and phosphate in stormwater filtration systems amended with drinking water treatment residual-based granules. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111645. [PMID: 33246755 DOI: 10.1016/j.jenvman.2020.111645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
To address the clogging issues in stormwater filtration systems, a drinking water treatment residual (DWTR)-based granule (DBG) substrate was developed herein by pyrolyzing and granulating the DWTR with bentonite and corncob. Toxicity characteristic leaching procedure studies indicated that fabricating into DBG stabilized the Al and heavy metals in DWTR and restrained the leaching risk. Then the removal performance of phosphate (PO₄-P) and heavy metal ions by the DWTR and DBG was evaluated in batch and laboratory-scale column experiments. Results from batch tests showed that the amount of Pb(Ⅱ) adsorbed by DBG (18.47 ± 0.56 mg g⁻1) was approximately 2.3 times of that adsorbed by DWTR (8.05 ± 0.19 mg g⁻1), whereas the PO₄-P adsorption capacity of DBG (8.63 ± 0.24 mg g⁻1) was much lower than that of DWTR (25.33 ± 0.81 mg g⁻1). This could be ascribed to the addition of corncob and bentonite (at a mass ratio of 20% and 40% in DBG, respectively), which provided extremely high cation exchange capacity for the Pb(Ⅱ) adsorption, while no effective PO₄-P adsorption component was involved. Moreover, the pyrolysis process could improve the Pb(Ⅱ) and PO₄-P adsorption capacity of the raw-mixture by 42% and 7%, whereas granulation process decreased those of the pyrolysis-mixture by 15% and 20%, respectively, owing to the reduction of accessible surface area in the DBG. Under various stormwater runoff conditions, the involvement of DBG in stormwater filtration systems exerted consistently fancy performance of Cu(Ⅱ), Pb(Ⅱ), Cd(Ⅱ) and PO₄-P removal, with average removal rates of over 86.20% and desorption rates of less than 3.50%, indicating irreversible and strong complexion between the contaminants and DBG. The DBG column manifested good permeability and stable hydraulic conductivity (2.74-2.52 m d⁻1) over a 54-day rainfall period, which was beneficial to address the clogging issue of DWTR. Overall, this study provides an alternative pathway to enhance the hydraulic condition and treatment performance of the stormwater filtration systems for urban runoff management.
Collapse
Affiliation(s)
- Mengyue Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shunwen Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xiuheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
11
|
Granulation of Drinking Water Treatment Residues: Recent Advances and Prospects. WATER 2020. [DOI: 10.3390/w12051400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Beneficial reuse of drinking water treatment plant residues (WTRs) has been intensively studied worldwide in the last decades, but few engineering applications can be found. The majority of WTRs were directly reused in cake form (after dewatering), e.g., alum sludge cake as main substrate used in constructed wetlands (CWs), or oven dried and ground powdery form, e.g., sorbent for pollutant removal. However, WTRs reuse in such forms has several drawbacks, i.e., difficulty of recovering and easy clogging (in CWs), which result in limited WTRs engineering applications. Granulation or pelleting could widen and be a wiser WTRs reuse route and also seems to be a promising strategy to overcome the “application bottleneck” issues. In the literature, a number of trials of WTRs granulation have been reported since 2008, including sintering ceramsite, gel entrapment and newly emerged techniques. Hence, there is a need to overlook these studies and promote WTRs granulation for further development. To this end, this review firstly provides a piece of updated comprehensive information and critical analysis regarding WTRs granulation/pelleting technology. It aims to enhance WTRs granulation studies in the developing stage and thus enlarge WTRs engineering applications.
Collapse
|