1
|
Hou M, Wang Z, Zhang J, Yang Y, Li Y, Sun T, Luo H, Wan J, Chen K. Fabrication of polyethyleneimine functionalized magnetite nanoparticles for recyclable recovery of fucoidan from aqueous solution. Colloids Surf B Biointerfaces 2023; 229:113478. [PMID: 37515960 DOI: 10.1016/j.colsurfb.2023.113478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Fucoidan is a kind of natural water-soluble fucose-rich sulfated polysaccharide with promising applications in the food and pharmaceutical industry. However, the traditional methods for fucoidan recovery from aqueous solution are expensive, time-consuming, and environmentally unfriendly. In this work, polyethyleneimine functionalized magnetite nanoparticles (PEI-MNPs) with well-defined core-shell structures were prepared by a Layer-by-Layer (LbL) approach using sodium tripolyphosphate (STPP) as a cross-linker. The as-prepared PEI-MNPs showed improved adsorption capability towards fucoidan at pH 4-8 due to the high density of cationic groups on the surfaces and the absence of internal pores. It was found that the adsorption process of fucoidan onto PEI-MNPs can reach to equilibrium in 50 min at room temperature. The maximum qe derived from the Langmuir isotherm at room temperature was 169.1 mg per g at a pH of 7. A selective fucoidan capture over a model protein BSA can be realized by adjusting pH (6-8) and salt concentration (0.5-2.5 M). The PEI-MNPs loading with fucoidan can be isolated from the final products by a neodymium magnet and regenerated by 4 M NaCl solution as stripping reagent. Therefore, this novel kind of PEI-MNP could be a promising candidate for highly efficient and recyclable recovery of fucoidan from an aqueous solution.
Collapse
Affiliation(s)
- Mingze Hou
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhen Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiao Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yan Yang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yiheng Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tong Sun
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huafeng Luo
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiaqi Wan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Kezheng Chen
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
2
|
Radoń A, Włodarczyk A, Sieroń Ł, Rost-Roszkowska M, Chajec Ł, Łukowiec D, Ciuraszkiewicz A, Gębara P, Wacławek S, Kolano-Burian A. Influence of the modifiers in polyol method on magnetically induced hyperthermia and biocompatibility of ultrafine magnetite nanoparticles. Sci Rep 2023; 13:7860. [PMID: 37188707 DOI: 10.1038/s41598-023-34738-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/06/2023] [Indexed: 05/17/2023] Open
Abstract
Magnetite nanoparticles (Fe3O4 NPs) are widely tested in various biomedical applications, including magnetically induced hyperthermia. In this study, the influence of the modifiers, i.e., urotropine, polyethylene glycol, and NH4HCO3, on the size, morphology, magnetically induced hyperthermia effect, and biocompatibility were tested for Fe3O4 NPs synthesized by polyol method. The nanoparticles were characterized by a spherical shape and similar size of around 10 nm. At the same time, their surface is functionalized by triethylene glycol or polyethylene glycol, depending on the modifiers. The Fe3O4 NPs synthesized in the presence of urotropine had the highest colloidal stability related to the high positive value of zeta potential (26.03 ± 0.55 mV) but were characterized by the lowest specific absorption rate (SAR) and intrinsic loss power (ILP). The highest potential in the hyperthermia applications have NPs synthesized using NH4HCO3, for which SAR and ILP were equal to 69.6 ± 5.2 W/g and 0.613 ± 0.051 nHm2/kg, respectively. Their application possibility was confirmed for a wide range of magnetic fields and by cytotoxicity tests. The absence of differences in toxicity to dermal fibroblasts between all studied NPs was confirmed. Additionally, no significant changes in the ultrastructure of fibroblast cells were observed apart from the gradual increase in the number of autophagous structures.
Collapse
Affiliation(s)
- Adrian Radoń
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18 a St., 44-100, Gliwice, Poland.
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Sowinskiego 5 St, 44-100, Gliwice, Poland.
| | - Agnieszka Włodarczyk
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Łukasz Sieroń
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Łukasz Chajec
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Dariusz Łukowiec
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18 a St., 44-100, Gliwice, Poland
| | - Agnieszka Ciuraszkiewicz
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Sowinskiego 5 St, 44-100, Gliwice, Poland
| | - Piotr Gębara
- Department of Physics, Częstochowa University of Technology, Armii Krajowej 19, 42-200, Czestochowa, Poland
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Aleksandra Kolano-Burian
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Sowinskiego 5 St, 44-100, Gliwice, Poland
| |
Collapse
|
3
|
Ultrasonic preparation of new nanocomposites poly(GMA)@amino-functionalized Fe3O4: structural, morphological and thermal properties. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Kouznetsov VV, Hernández JG. Nanostructured silicate catalysts for environmentally benign Strecker-type reactions: status quo and quo vadis. RSC Adv 2022; 12:20807-20828. [PMID: 35919186 PMCID: PMC9299969 DOI: 10.1039/d2ra03102g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 01/26/2023] Open
Abstract
Chemical processes are usually catalytic transformations. The use of catalytic reagents can reduce the reaction temperature, decrease reagent-based waste, and enhance the selectivity of a reaction potentially avoiding unwanted side reactions leading to green technology. Chemical processes are also frequently based on multicomponent reactions (MCRs) that possess evident improvements over multistep processes. Both MCRs and catalysis tools are the most valuable principles of green chemistry. Among diverse MCRs, the three-component Strecker reaction (S-3-CR) is a particular transformation conducive to the formation of valuable bifunctional building blocks (α-amino nitriles) in organic synthesis, medicinal chemistry, drug research, and organic materials science. To be a practical synthetic tool, the S-3-CR must be achieved using alternative energy input systems, safe reaction media, and effective catalysts. These latter reagents are now deeply associated with nanoscience and nanocatalysis. Continuously developed, nanostructured silicate catalysts symbolize green pathways in our quest to attain sustainability. Studying and developing nanocatalyzed S-3-CR condensations as an important model will be suitable for achieving the current green mission. This critical review aims to highlight the advances in the development of nanostructured catalysts for technologically important Strecker-type reactions and to analyze this progress from the viewpoint of green and sustainable chemistry.
Collapse
Affiliation(s)
- Vladimir V Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, CMN, Universidad Industrial de Santander, Parque Tecnológico Guatiguará Km 2 Vía Refugio, Piedecuesta 681011 Colombia +57 7 634 4000 ext. 3593
| | - José G Hernández
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Calle 70 No. 52-21 Medellín Colombia
| |
Collapse
|
5
|
Guillén A, Ardila Y, Noguera MJ, Campaña AL, Bejarano M, Akle V, Osma JF. Toxicity of Modified Magnetite-Based Nanocomposites Used for Wastewater Treatment and Evaluated on Zebrafish ( Danio rerio) Model. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:489. [PMID: 35159834 PMCID: PMC8839930 DOI: 10.3390/nano12030489] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023]
Abstract
Magnetite-based nanocomposites are used for biomedical, industrial, and environmental applications. In this study, we evaluated their effects on survival, malformation, reproduction, and behavior in a zebrafish animal model. Nanoparticles were synthesized by chemical coprecipitation and were surface-functionalized with (3-aminopropyl) triethoxysilane (APTES), L-cysteine (Cys), and 3-(triethoxysilyl) propylsuccinic anhydride (CAS). All these nanocomposites were designed for the treatment of wastewater. Zebrafish embryos at 8 h post-fertilization (hpf) and larvae at 4 days post-fertilization (dpf) were exposed to the magnetic nanocomposites Fe3O4 MNP (magnetite), MNP+APTES, MNP+Cys, MNP+APTES+Cys, and MNP+CAS, at concentrations of 1, 10, 100, and 1000 µg/mL. Zebrafish were observed until 13 dpf, registering daily hatching, survival, and malformations. Behavior was tested at 10 dpf for larvae, and reproduction was analyzed later in adulthood. The results showed that the toxicity of the nanocomposites used were relatively low. Exploratory behavior tests showed no significant changes. Reproduction in adults treated during development was not affected, even at concentrations above the OECD recommendation. Given the slight effects observed so far, these results suggest that nanocomposites at the concentrations evaluated here could be a viable alternative for water remediation because they do not affect the long-term survival and welfare of the animals.
Collapse
Affiliation(s)
- Amaimen Guillén
- CMUA, Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (A.G.); (M.J.N.); (A.L.C.)
- Neuroscience and Circadian Rhythms Laboratory, School of Medicine, Universidad de los Andes, Cra 1 No. 18a-10, Bogotá 111711, Colombia; (Y.A.); (M.B.); (V.A.)
| | - Yeferzon Ardila
- Neuroscience and Circadian Rhythms Laboratory, School of Medicine, Universidad de los Andes, Cra 1 No. 18a-10, Bogotá 111711, Colombia; (Y.A.); (M.B.); (V.A.)
| | - Mabel Juliana Noguera
- CMUA, Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (A.G.); (M.J.N.); (A.L.C.)
| | - Ana Lucía Campaña
- CMUA, Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (A.G.); (M.J.N.); (A.L.C.)
| | - Miranda Bejarano
- Neuroscience and Circadian Rhythms Laboratory, School of Medicine, Universidad de los Andes, Cra 1 No. 18a-10, Bogotá 111711, Colombia; (Y.A.); (M.B.); (V.A.)
| | - Veronica Akle
- Neuroscience and Circadian Rhythms Laboratory, School of Medicine, Universidad de los Andes, Cra 1 No. 18a-10, Bogotá 111711, Colombia; (Y.A.); (M.B.); (V.A.)
| | - Johann F. Osma
- CMUA, Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (A.G.); (M.J.N.); (A.L.C.)
| |
Collapse
|
6
|
Gaete J, Arroyo JL, Norambuena Á, Abarca G, Morales-Verdejo C. Mechanistic Insights into the Thermal Decomposition of Ammonium Perchlorate: The Role of Amino-Functionalized Magnetic Nanoparticles. Inorg Chem 2022; 61:1447-1455. [PMID: 34995064 DOI: 10.1021/acs.inorgchem.1c03121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work reports the characterization and application of two promising nanocatalysts for the thermal decomposition of ammonium perchlorate (AP). To obtain these composite materials, magnetite nanoparticles (Fe3O4 NPs) were functionalized with two different amine derivative groups, tertiary amine (Fe3O4 NPs-A1) and quaternary amine. X-ray photoelectron spectroscopy and differential scanning calorimetry provided mechanistic insights into the thermal decomposition of AP. Furthermore, tertiary and quaternary amine groups play a critical role, where the presence of an extra proton could favor an electron-proton transfer as the rate-determining step. Moreover, Fe3O4 NPs-A1 causes a diminution of the high-temperature decomposition of AP positively to 335 °C, increasing the energy release by 278 J g-1 and consequently affording the lowest activation energy (102 kJ mol-1), indicating a low degree of thermal stability, and accelerating the thermal decomposition of AP.
Collapse
Affiliation(s)
- José Gaete
- Universidad Bernardo OHiggins, Facultad de Ciencias de la Salud, Centro Integrativo de Biología y Química Aplicada (CIBQA), General Gana, 1702 Santiago, Chile
| | - Juan Luis Arroyo
- Laboratorio de Materiales Energéticos, Instituto de Investigaciones y Control del Ejército de Chile (IDIC), Av. Pedro Montt, 2136 Santiago, Chile
| | - Ángel Norambuena
- Laboratorio de Materiales Energéticos, Instituto de Investigaciones y Control del Ejército de Chile (IDIC), Av. Pedro Montt, 2136 Santiago, Chile
| | - Gabriel Abarca
- Universidad Bernardo OHiggins, Facultad de Ciencias de la Salud, Centro Integrativo de Biología y Química Aplicada (CIBQA), General Gana, 1702 Santiago, Chile
| | - Cesar Morales-Verdejo
- Universidad Bernardo OHiggins, Facultad de Ciencias de la Salud, Centro Integrativo de Biología y Química Aplicada (CIBQA), General Gana, 1702 Santiago, Chile
| |
Collapse
|
7
|
Han R, Wang F, Zhao C, Zhang M, Cui S, Yang J. Magnetic solid-phase extraction of pyrethroid and neonicotinoid insecticides separately in environmental water samples based on alkaline or acidic group-functionalized mesoporous silica. Analyst 2022; 147:1995-2007. [DOI: 10.1039/d2an00088a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, amino- or carboxyl-functionalized magnetic KIT-6 have been synthesized separately. The two nanocomposites were successfully used to enrich pyrethroids and neonicotinoids insecticides from environmental water samples, respectively.
Collapse
Affiliation(s)
- Rui Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Fei Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Chuanfeng Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Meixing Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Shihai Cui
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jing Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
8
|
Wan K, Wang G, Xue S, Xiao Y, Fan J, Li L, Miao Z. Preparation of Humic Acid/l-Cysteine-Codecorated Magnetic Fe 3O 4 Nanoparticles for Selective and Highly Efficient Adsorption of Mercury. ACS OMEGA 2021; 6:7941-7950. [PMID: 33778305 PMCID: PMC7992173 DOI: 10.1021/acsomega.1c00583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/03/2021] [Indexed: 05/12/2023]
Abstract
Humic acid and l-cysteine-codecorated magnetic Fe3O4 nanoparticles (HA/LC-MNPs) were synthesized using a coprecipitation method. Humic acid fractions abundant with carboxyl and hydroxyl groups can be selectively coated on the surface of MNPs during synthesis. HA/LC-MNPs with abundant heteroatoms (N, S, and O) show excellent removal capacity, great selectivity, and also fast trapping of Hg2+ in a wide pH range. The adsorption capacity of HA/LC-MNPs for Hg2+ can reach 206.5 mg/g, and the chemisorption was attributed to the major adsorption form. In competitive adsorption, HA/LC-MNPs preferentially adsorbed Hg2+ with an affinity order of Hg2+ > > Pb2+ > Cu2+ ≫ Zn2+ > Cd2+. In total, 93.91% of Hg2+ can be quickly captured in the presence of a 6000 times higher concentration of competing metal ions (Pb2+, Cu2+, Cd2+, and Zn2+) within 30 min. The adsorption mechanism was analyzed using X-ray photoelectron spectroscopy (XPS). It suggested that the HA/LC-MNPs enhanced the adsorption capacity of Hg2+ because of the complexing abilities of the multiple thiol, amino, and carboxyl groups in sorbents with Hg2+, the ion exchange ability of the carboxyl group, and the negative charge surface. All in all, HA/LC-MNPs are a potentially useful and economic material for the selective removal of Hg2+ from polluted water.
Collapse
Affiliation(s)
- Keji Wan
- National
Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Guoqiang Wang
- School
of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Shuwen Xue
- School
of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Yawen Xiao
- School
of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Jinjin Fan
- School
of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Longdi Li
- School
of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Zhenyong Miao
- School
of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| |
Collapse
|