1
|
Cyganowski P, Dzimitrowicz A, Marzec MM, Arabasz S, Sokołowski K, Lesniewicz A, Nowak S, Pohl P, Bernasik A, Jermakowicz-Bartkowiak D. Catalytic reductions of nitroaromatic compounds over heterogeneous catalysts with rhenium sub-nanostructures. Sci Rep 2023; 13:12789. [PMID: 37550421 PMCID: PMC10406812 DOI: 10.1038/s41598-023-39830-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023] Open
Abstract
Nitroaromatic compounds (NACs) are key contaminants of anthropogenic origin and pose a severe threat to human and animal lives. Although the catalytic activities of Re nanostructures (NSs) are significantly higher than those of other heterogeneous catalysts containing NSs, few studies have been reported on the application of Re-based nanocatalysts for NAC hydrogenation. Accordingly, herein, catalytic reductions of nitrobenzene (NB), 4-nitrophenol (4-NP), 2-nitroaniline (2-NA), 4-nitroaniline (4-NA), and 2,4,6-trinitrophenol (2,4,6-TNP) over new Re-based heterogeneous catalysts were proposed. The catalytic materials were designed to enable effective syntheses and stabilisation of particularly small Re structures over them. Accordingly, catalytic hydrogenations of NACs under mild conditions were significantly enhanced by Re sub-nanostructures (Re-sub-NSs). The highest pseudo-first-order rate constants for NB, 4-NP, 2-NA, 4-NA, and 2,4,6-TNP reductions over the catalyst acquired by stabilising Re using bis(3-aminopropyl)amine (BAPA), which led to Re-sub-NSs with Re concentrations of 16.7 wt%, were 0.210, 0.130, 0.100, 0.180, and 0.090 min-1, respectively.
Collapse
Affiliation(s)
- Piotr Cyganowski
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze S. Wyspianskiego 27, 50-370, Wrocław, Poland.
| | - Anna Dzimitrowicz
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze S. Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Mateusz M Marzec
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30-059, Kraków, Poland
| | - Sebastian Arabasz
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stablowicka 147, 54-066, Wrocław, Poland
| | - Krystian Sokołowski
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30-059, Kraków, Poland
| | - Anna Lesniewicz
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze S. Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Sylwia Nowak
- Laboratory of Microscopic Techniques, Faculty of Biological Sciences, University of Wroclaw, H. Sienkiewicza 21, 50-335, Wrocław, Poland
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze S. Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Andrzej Bernasik
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30-059, Kraków, Poland
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30-059, Kraków, Poland
| | - Dorota Jermakowicz-Bartkowiak
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze S. Wyspianskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
2
|
Cyganowski P, Dzimitrowicz A. Heterogenous nanocomposite catalysts with rhenium nanostructures for the catalytic reduction of 4-nitrophenol. Sci Rep 2022; 12:6228. [PMID: 35422074 PMCID: PMC9010420 DOI: 10.1038/s41598-022-10237-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/04/2022] [Indexed: 11/12/2022] Open
Abstract
Stable and efficient heterogenous nanocatalysts for the reduction of 4-nitrophenol (4-NP) has attracted much attention in recent years. In this context, a unique and efficient in situ approach is used for the production of new polymeric nanocomposites (pNCs) containing rhenium nanostructures (ReNSs). These rare materials should facilitate the catalytic decomposition of 4-NP, in turn ensuring increased catalytic activity and stability. These nanomaterials were analyzed using Fourier-Transformation Infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and X-ray powder diffraction (XRD). The efficiency of the catalytic reaction was estimated based on the acquired UV-Vis spectra, which enabled the estimation of the catalytic activity using pseud-first order modelling. The applied method resulted in the successful production and efficient loading of ReNSs in the polymeric matrices. Amino functionalities played a primary role in the reduction process. Moreover, the functionality that is derived from 1.1'-carbonyl imidazole improved the availability of the ReNSs, which resulted in 90% conversion of 4-NP with a maximum rate constant of 0.29 min-1 over 11 subsequent catalytic cycles. This effect was observed despite the trace amount of Re in the pNCs (~ 5%), suggesting a synergistic effect between the polymeric base and the ReNSs-based catalyst.
Collapse
Affiliation(s)
- Piotr Cyganowski
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze S. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Anna Dzimitrowicz
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze S. Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
3
|
Cyganowski P, Wolska J. Nanocomposite membranes with Au nanoparticles for dialysis-based catalytic reduction-separation of nitroaromatic compounds. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Cyganowski P, Dzimitrowicz A, Jamroz P, Jermakowicz-Bartkowiak D, Pohl P. Rhenium Nanostructures Loaded into Amino-Functionalized Resin as a Nanocomposite Catalyst for Hydrogenation of 4-Nitrophenol and 4-Nitroaniline. Polymers (Basel) 2021; 13:3796. [PMID: 34771354 PMCID: PMC8588495 DOI: 10.3390/polym13213796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
The present work presents a new nanocomposite catalyst with rhenium nanostructures (ReNSs) for the catalytic hydrogenation of 4-nitrophenol and 4-nitroaniline. The catalyst, based on an anion exchange resin with functionality derived from 1,1'-carboimidazole, was obtained in the process involving anion exchange of ReO4- ions followed by their reduction with NaBH4. The amino functionality present in the resin played a primary role in the stabilization of the resultant ReNSs, consisting of ≈1% (w/w) Re in the polymer mass. The synthesized and capped ReNSs were amorphous and had the average size of 3.45 ± 1.85 nm. Then, the obtained catalyst was used in a catalytic reduction of 4-nitrophenol (4-NP) and 4-nitroaniline (4-NA). Following the pseudo-first-order kinetics, 5 mg of the catalyst led to a 90% conversion of 4-NP with the mass-normalized rate constant (km1) of 6.94 × 10-3 min-1 mg-1, while the corresponding value acquired for 4-NA was 7.2 × 10-3 min-1 mg-1, despite the trace amount of Re in the heterogenous catalyst. The obtained material was also conveniently reused.
Collapse
Affiliation(s)
- Piotr Cyganowski
- Department of Process Engineering and Technology of Polymer and Carbonaceous Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland;
| | - Anna Dzimitrowicz
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.D.); (P.J.); (P.P.)
| | - Piotr Jamroz
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.D.); (P.J.); (P.P.)
| | - Dorota Jermakowicz-Bartkowiak
- Department of Process Engineering and Technology of Polymer and Carbonaceous Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland;
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.D.); (P.J.); (P.P.)
| |
Collapse
|
5
|
Rocha M, Pereira C, Freire C. Au/Ag nanoparticles-decorated TiO2 with enhanced catalytic activity for nitroarenes reduction. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Cyganowski P. Fully recyclable gold-based nanocomposite catalysts with enhanced reusability for catalytic hydrogenation of p-nitrophenol. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Li Z, Zhang M, Liu L, Zheng J, Alsulami H, Kutbi MA, Xu J. Noble metal and Fe3O4Co-functionalizedco-functionalized hierarchical polyaniline@MoS2 microtubes. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Preparation of Silver Nanoparticles in a Plasma-Liquid System in the Presence of PVA: Antimicrobial, Catalytic, and Sensing Properties. J CHEM-NY 2020. [DOI: 10.1155/2020/5380950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The preparation of stabilized silver nanodispersions under the action of short-term plasma discharge using a polyvinyl alcohol stabilizer (polyvinyl alcohol (PVA)) was investigated. The influence of the basic technological parameters such as initial Ag+ concentration, PVA concentration, and process duration on the formation of nanoparticles and their characteristics (size and stability) were determined. The UV-Vis spectra showed the localized surface plasmon resonance at wavelengths of 400–420 nm. The SEM images showed that the shape of Ag NPs is spherical with an average particle size up to 30 nm. Ag NPs were used as a catalyst for the reduction of 4-nitrophenol (4-NP). The effect of the concentration of PNP and catalyst dosage on the value of apparent rate constant (kapp) for catalytic reduction of 4-NP in the presence of Ag NPs was investigated by means of UV-Vis spectrophotometry. The antimicrobial activity of Ag nanoparticles was investigated against yeast and Escherichia coli. The colorimetric sensor studies of plasma synthesized Ag NPs showed selective sensing of the potentially hazardous Hg2+ ion in water.
Collapse
|
9
|
Dzimitrowicz A, Cyganowski P, Pohl P, Milkowska W, Jermakowicz-Bartkowiak D, Jamroz P. Plant Extracts Activated by Cold Atmospheric Pressure Plasmas as Suitable Tools for Synthesis of Gold Nanostructures with Catalytic Uses. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1088. [PMID: 32492774 PMCID: PMC7353295 DOI: 10.3390/nano10061088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022]
Abstract
Because cold atmospheric pressure plasma (CAPP)-based technologies are very useful tools in nanomaterials synthesis, in this work we have connected two unique in their classes approaches-a CAPP-based protocol and a green synthesis method in order to obtain stable-in-time gold nanoparticles (AuNPs). To do so, we have used an aqueous Gingko biloba leave extract and an aqueous Panax ginseng root extract (untreated or treated by CAPP) to produce AuNPs, suitable for catalytical uses. Firstly, we have adjusted the optical properties of resulted AuNPs, applying UV/Vis absorption spectrophotometry (UV/Vis). To reveal the morphology of Au nanostructures, transmission electron microscopy (TEM) in addition to energy dispersive X-ray scattering (EDX) and selected area X-ray diffraction (SAED) was utilized. Moreover, optical emission spectrometry (OES) in addition to a colorimetric method was used to identify and determine the concentration of selected RONS occurring at the liquid-CAPP interface. Additionally, attenuated total reflectance Fourier transform-infrared spectroscopy (ATR FT-IR) was applied to reveal the active compounds, which might be responsible for the AuNPs surface functionalization and stabilization. Within the performed research it was found that the smallest in size AuNPs were synthesized using the aqueous P. ginseng root extract, which was activated by direct current atmospheric pressure glow discharge (dc-APGD), generated in contact with a flowing liquid cathode (FLC). On the contrary, taking into account the aqueous G. biloba leave extract, the smallest in size AuNPs were synthesized when the untreated by CAPP aqueous G. biloba leave extract was involved in the Au nanostructures synthesis. For catalytical studies we have chosen AuNPs produced using the aqueous P. ginseng root extract activated by FLC-dc-APGD as well as AuNPs synthesized using the aqueous G. biloba leave extract also activated by FLC-dc-APGD. Those NPs were successfully used as homogenous catalysts for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP).
Collapse
Affiliation(s)
- Anna Dzimitrowicz
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland; (P.P.); (W.M.); (P.J.)
| | - Piotr Cyganowski
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland; (P.C.); (D.J.-B.)
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland; (P.P.); (W.M.); (P.J.)
| | - Weronika Milkowska
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland; (P.P.); (W.M.); (P.J.)
| | - Dorota Jermakowicz-Bartkowiak
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland; (P.C.); (D.J.-B.)
| | - Piotr Jamroz
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland; (P.P.); (W.M.); (P.J.)
| |
Collapse
|
10
|
Cyganowski P, Dzimitrowicz A. A Mini-Review on Anion Exchange and Chelating Polymers for Applications in Hydrometallurgy, Environmental Protection, and Biomedicine. Polymers (Basel) 2020; 12:E784. [PMID: 32252240 PMCID: PMC7240740 DOI: 10.3390/polym12040784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/03/2022] Open
Abstract
The rapidly increasing demand for technologies aiming to resolve challenges of separations and environmental protection causes a sharp increase in the demand for ion exchange (IX) and chelating polymers. These unique materials can offer target-selective adsorption properties vital for the removal or recovery of harmful and precious materials, where trace concentrations thereof make other techniques insufficient. Hence, recent achievements in syntheses of IX and chelating resins designed and developed in our research group are discussed within this mini-review. The aim of the present work is to reveal that, due to the diversified and unique physiochemical characteristics of the proposed materials, they are not limited to traditional separation techniques and could be used in multifunctional areas of applications, including catalysis, heat management, and biomedicine.
Collapse
Affiliation(s)
- Piotr Cyganowski
- Wroclaw University of Science and Technology, Department of Process Engineering and Technology of Polymer and Carbon Materials, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Anna Dzimitrowicz
- Wroclaw University of Science and Technology, Department of Analytical Chemistry and Chemical Metallurgy, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland;
| |
Collapse
|