1
|
Khademi Z, Nikoofar K. Applications of catalytic systems containing DNA nucleobases (adenine, cytosine, guanine, and thymine) in organic reactions. RSC Adv 2025; 15:3192-3218. [PMID: 39896433 PMCID: PMC11784891 DOI: 10.1039/d4ra07996e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
In recent years, nucleobases have attracted special attention because of their abundant resources and multiple interaction sites, which enable them to interact with and functionalize other molecules. This review focuses on the catalytic activities of each of the four main nucleobases found in deoxyribonucleic acid (DNA) in various organic reactions. Based on the studies, most of the nucleobases act as heterogeneous catalytic systems. The authors hope their assessment will help chemists and biochemists to propose new procedures for utilizing nucleobases as catalysts in various organic synthetic transformations. The review covers the corresponding literature published till the end of August 2023.
Collapse
Affiliation(s)
- Zahra Khademi
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University P.O. Box 1993891176 Tehran Iran +982188041344 +982188041344
| | - Kobra Nikoofar
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University P.O. Box 1993891176 Tehran Iran +982188041344 +982188041344
| |
Collapse
|
2
|
Gao Z, Wang H, Hu Y, Sun J. Bimetallic MnZn-MOF-74 with enhanced percentage of Mn III: Efficiently catalytic activity for direct oxidative carboxylation of olefins to cyclic carbonates under mild and solvent-free condition. J Colloid Interface Sci 2024; 671:232-247. [PMID: 38810338 DOI: 10.1016/j.jcis.2024.05.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Multi-functional MOF catalyst with oxidative- and acid- centers showed potential in olefins oxidative carboxylation to cyclic carbonates directly. In this work, a series of bimetallic MnZn-MOF-74 with different molar ratios of Mn and Zn were synthesized successfully through a one-pot facile method. Thoroughly characterization indicated that the existence of Zn regulated the valance state distribution of Mn in the obtained MnZn-MOF-74. Mn99.3Zn0.7-MOF-74 with the highest ratio of MnIII (61.3 %) performed the most efficient activity for olefin direct tandem oxidative carboxylation reaction using aqueous tert-butyl hydroperoxide oxidant under solvent-free condition of 90 °C, 1.0 MPa CO2 and 4 h. Mn99.3Zn0.7-MOF-74 also showed satisfactory versatility and recyclability. Based on the experiments, a feasible mechanism was presented. Thanks to the high ratio of active MnIII as main oxidative center, the coordination unsaturated bimetal Mn and Zn as Lewis-acid sites, O2- of metal - O as Lewis-base sites and combined effect with Bu4NBr cocatalyst, Mn99.3Zn0.7-MOF-74 presented efficient performance for the direct synthesis of cyclic carbonates from olefins. The metal Zn in MOF can regulate the valance state distribution of Mn and result in efficient catalytic property, presenting a potential avenue for direct oxidative carboxylation reaction of olefins to cyclic carbonates synthesis.
Collapse
Affiliation(s)
- Ziyu Gao
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Huidong Wang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Yuchen Hu
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China.
| |
Collapse
|
3
|
Abazari R, Ghorbani N, Shariati J, Varma RS, Qian J. Copper-Based Bio-MOF/GO with Lewis Basic Sites for CO 2 Fixation into Cyclic Carbonates and C-C Bond-Forming Reactions. Inorg Chem 2024; 63:12667-12680. [PMID: 38916987 DOI: 10.1021/acs.inorgchem.4c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Several measures, including crude oil recovery improvement and carbon dioxide (CO2) conversion into valuable chemicals, have been considered to decrease the greenhouse effect and ensure a sustainable low-carbon future. The Knoevenagel condensation and CO2 fixation have been introduced as two principal solutions to these challenges. In the present study for the first time, bio-metal-organic frameworks (MOF)(Cu)/graphene oxide (GO) nanocomposites have been used as catalytic agents for these two reactions. In view of the attendance of amine groups, biological MOFs with NH2 functional groups as Lewis base sites protruding on the channels' internal surface were used. The bio-MOF(Cu)/20%GO performs efficaciously in CO2 fixation, leading to more than 99.9% conversion with TON = 525 via a solvent-free reaction under a 1 bar CO2 atmosphere. It has been shown that these frameworks are highly catalytic due to the Lewis basic sites, i.e., NH2, pyrimidine, and C═O groups. Besides, the Lewis base active sites exert synergistic effects and render bio-MOF(Cu)/10%GO nanostructures as highly efficient catalysts, significantly accelerating Knoevenagel condensation reactions of aldehydes and malononitrile as substrates, thanks to the high TOF (1327 h-1) and acceptable reusability. Bio-MOFs can be stabilized in reactions using GO with oxygen-containing functional groups that contribute as efficient substitutes, leading to an expeditious reaction speed and facilitating substrate absorption.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111 Maragheh, Iran
| | - Nasrin Ghorbani
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111 Maragheh, Iran
| | - Jafar Shariati
- Department of Chemical Engineering, Darab Branch, Islamic Azad University, P.O. Box 74817-83143 Darab, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, São Paulo, Brazil
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| |
Collapse
|
4
|
Bilyachenko AN, Gutsul EI, Khrustalev VN, Chusova O, Dorovatovskii PV, Aliyeva VA, Paninho AB, Nunes AVM, Mahmudov KT, Shubina ES, Pombeiro AJL. A Family of Cagelike Mn-Silsesquioxane/Bathophenanthroline Complexes: Synthesis, Structure, and Catalytic and Antifungal Activity. Inorg Chem 2023; 62:15537-15549. [PMID: 37698451 DOI: 10.1021/acs.inorgchem.3c02040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
This study reports a novel family of cage manganesesilsesquioxanes prepared via complexation with bathophenanthroline (4,7-diphenyl-1,10-phenanthroline). The resulting Mn4-, Mn6Li2-, and Mn4Na-compounds exhibit several unprecedented cage metallasilsesquioxane structural features, including intriguing self-assembly of silsesquioxane ligands. Complexes were tested in vitro for fungicidal activity against seven classes of phytopathogenic fungi. The representative Mn4Na-complex acts as a catalyst in the cycloaddition of CO2 to epoxides under solvent-free conditions to form cyclic carbonates in good yields.
Collapse
Affiliation(s)
- Alexey N Bilyachenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia
| | - Evgenii I Gutsul
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991 Moscow, Russia
| | - Olga Chusova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", Acad. Kurchatov Sq., 1, 123182 Moscow, Russia
| | - Vusala A Aliyeva
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana B Paninho
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana V M Nunes
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Kamran T Mahmudov
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Excellence Center, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan
| | - Elena S Shubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Armando J L Pombeiro
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
5
|
Obeso JL, Flores JG, Flores CV, López-Cervantes VB, Martínez-Jiménez V, de Los Reyes JA, Lima E, Solis-Ibarra D, Ibarra IA, Leyva C, Peralta RA. SU-101: a Bi(III)-based metal-organic framework as an efficient heterogeneous catalyst for the CO 2 cycloaddition reaction. Dalton Trans 2023; 52:12490-12495. [PMID: 37602766 DOI: 10.1039/d3dt01743e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
A non-porous version of SU-101 (herein n-SU-101) was evaluated for the CO2 cycloaddition reaction. The findings revealed that open metal sites (Bi3+) are necessary for the reaction. n-SU-101 displays a high styrene oxide conversion of 96.6% under mild conditions (3 bar and 80 °C). The catalytic activity of n-SU-101 demonstrated its potential application for the cycloaddition of CO2 using styrene oxide.
Collapse
Affiliation(s)
- Juan L Obeso
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico.
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - J Gabriel Flores
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
- Área de Química Aplicada, Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, 02200, Ciudad de México, Mexico
| | - Catalina V Flores
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico.
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Valeria B López-Cervantes
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - V Martínez-Jiménez
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
| | - José Antonio de Los Reyes
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Diego Solis-Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Carolina Leyva
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico.
| | - Ricardo A Peralta
- Departamento de Química, División de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana (UAM-I), 09340, Mexico.
| |
Collapse
|
6
|
Malekshah R, Moharramnejad M, Gharanli S, Shahi M, Ehsani A, Haribabu J, Ouachtak H, Mirtamizdoust B, Kamwilaisak K, Sillanpää M, Erfani H. MOFs as Versatile Catalysts: Synthesis Strategies and Applications in Value-Added Compound Production. ACS OMEGA 2023; 8:31600-31619. [PMID: 37692216 PMCID: PMC10483527 DOI: 10.1021/acsomega.3c02552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023]
Abstract
Catalysts played a crucial role in advancing modern human civilization, from ancient times to the industrial revolution. Due to high cost and limited availability of traditional catalysts, there is a need to develop cost-effective, high-activity, and nonprecious metal-based electrocatalysts. Metal-organic frameworks (MOFs) have emerged as an ideal candidate for heterogeneous catalysis due to their physicochemical properties, hybrid inorganic/organic structures, uncoordinated metal sites, and accessible organic sections. MOFs are high nanoporous crystalline materials that can be used as catalysts to facilitate polymerization reactions. Their chemical and structural diversity make them effective for various reactions compared to traditional catalysts. MOFs have been applied in gas storage and separation, ion-exchange, drug delivery, luminescence, sensing, nanofilters, water purification, and catalysis. The review focuses on MOF-enabled heterogeneous catalysis for value-added compound production, including alcohol oxidation, olefin oligomerization, and polymerization reactions. MOFs offer tunable porosity, high spatial density, and single-crystal XRD control over catalyst properties. In this review, MOFs were focused on reactions of CO2 fixation, CO2 reduction, and photoelectrochemical water splitting. Overall, MOFs have great potential as versatile catalysts for diverse applications in the future.
Collapse
Affiliation(s)
- Rahime
Eshaghi Malekshah
- Medical
Biomaterial Research Centre (MBRC), Tehran
University of Medical Sciences, Tehran 14166-34793, Iran
- Department
of Chemistry, Semnan University, Semnan 35131-19111, Iran
| | - Mojtaba Moharramnejad
- Young
Researcher and Elite Group, Qom University, Qom 37161-46611, Iran
- Department
of Chemistry, Faculty of Science, University
of Qom, Qom 37161-46611, Iran
| | - Sajjad Gharanli
- Department
of Chemical Engineering, Faculty of Engineering, University of Qom, Qom 37161-46611, Iran
| | - Mehrnaz Shahi
- Department
of Chemistry, Semnan University, Semnan 35131-19111, Iran
| | - Ali Ehsani
- Department
of Chemistry, Faculty of Science, University
of Qom, Qom 37161-46611, Iran
| | - Jebiti Haribabu
- Facultad
de Medicina, Universidad de Atacama, Los Carreras 1579, Copiapo 1532502, Chile
- Chennai Institute of Technology (CIT), Chennai 600069, India
| | - Hassan Ouachtak
- Laboratory
of Organic and Physical Chemistry, Faculty of Science, Ibn Zohr University, Agadir 80060, Morocco
- Faculty
of Applied Science, Ait Melloul, Ibn Zohr
University, Agadir 80060, Morocco
| | - Babak Mirtamizdoust
- Department
of Chemistry, Faculty of Science, University
of Qom, Qom 37161-46611, Iran
| | - Khanita Kamwilaisak
- Chemical
Engineering Department, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Mika Sillanpää
- Department
of Chemical Engineering, School of Mining, Metallurgy and Chemical
Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- International
Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, Himachal Pradesh 173212, India
- Department
of Biological and Chemical Engineering, Aarhus University, Nørrebrogade
44, Aarhus C 8000, Denmark
- Department
of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Hadi Erfani
- Department
of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 14778-93855, Iran
| |
Collapse
|
7
|
Gao F, Ji C, Wang S, Dong J, Guo C, Gao Y, Chen G. Carboxy-functionalized imidazolium ionic liquid immobilized on MCM-41 as recyclable catalysts for carbon dioxide conversion to cyclic carbonates. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
8
|
Mujmule RB, Kim H. Efficient imidazolium ionic liquid as a tri-functional robust catalyst for chemical fixation of CO 2 into cyclic carbonates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115045. [PMID: 35436708 DOI: 10.1016/j.jenvman.2022.115045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 03/10/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The recent increase in CO2 levels has had an extensive impact on the environment; hence an effective catalyst for chemical CO2 fixation into value-added products is demanded. This work demonstrates a simple approach towards the chemical fixation of CO2 to cyclic carbonates without solvent, metal and additives using one-pot synthesized tri-functional-imidazolium bromide ionic liquid. Herein, synthesized tri-functional-imidazolium-based ionic liquids, namely 3-(2-hydroxyethyl)-1-vinyl-1H-imidazole-3-ium bromide ([VIMEtOH][Br] (24 and 72 h)), 3-(2-hydroxyethyl)-1-vinyl-1H-imidazole-3-ium hydroxyl ([VIMEtOH][OH]) and poly 3-(2-hydroxyethyl)-1-vinyl-1H-imidazole-3-ium bromide (poly [VIMEtOH][Br]), were used for the comprehensive investigation of chemical fixation of CO2 into cyclic carbonates and their physiochemical properties. In case of [VIMEtOH][Br] ionic liquid, it displayed time-dependent synthesis dissolution in the reaction system. This study found that [VIMEtOH][Br]-72 ionic liquid is not dissolved in the reaction system. The effect on the catalytic efficiency of the presence of functional groups in ionic liquids such as N-vinyl (-CC-N), acidic proton of imidazolium (-C (2)-H) and hydroxyl (-OH) along with bromide anion and the reaction conditions are systematically investigated. For CO2 fixation, 99.6% conversion of propylene oxide with an excellent selectivity of propylene carbonate (≥99%) over [VIMEtOH][Br]-72 catalyst (at 120 °C, 2 MPa, 2 h) was observed without co-catalyst, metal and solvent. Also, it demonstrated an excellent wide substrates scope of epoxide and all reactions were performed on gram-scalable, which are potential prospects for industrial use.
Collapse
Affiliation(s)
- Rajendra B Mujmule
- Environmental Waste Recycle Institute, Department of Energy Science and Technology, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Hern Kim
- Environmental Waste Recycle Institute, Department of Energy Science and Technology, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| |
Collapse
|
9
|
Gangu KK, Jonnalagadda SB. A Review on Metal-Organic Frameworks as Congenial Heterogeneous Catalysts for Potential Organic Transformations. Front Chem 2022; 9:747615. [PMID: 34976945 PMCID: PMC8718437 DOI: 10.3389/fchem.2021.747615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Metal-organic frameworks (MOFs) have emerged as versatile candidates of interest in heterogeneous catalysis. Recent research and developments with MOFs positively endorse their role as catalysts in generating invaluable organic compounds. To harness the full potential of MOFs in value-added organic transformation, a comprehensive look at how these materials are likely to involve in the catalytic processes is essential. Mainstays of MOFs such as metal nodes, linkers, encapsulation materials, and enveloped structures tend to produce capable catalytic active sites that offer solutions to reduce human efforts in developing new organic reactions. The main advantages of choosing MOFs as reusable catalysts are the flexible and robust skeleton, regular porosity, high pore volume, and accessible synthesis accompanied with cost-effectiveness. As hosts for active metals, sole MOFs, modified MOFs, and MOFs have made remarkable advances as solid catalysts. The extensive exploration of the MOFs possibly led to their fast adoption in fabricating new biological molecules such as pyridines, quinolines, quinazolinones, imines, and their derivatives. This review covers the varied MOFs and their catalytic properties in facilitating the selective formation of the product organic moieties and interprets MOF’s property responsible for their elegant performance.
Collapse
Affiliation(s)
- Kranthi Kumar Gangu
- Vignan's Institute of Information Technology, Visakhapatnam, India.,School of Chemistry and Physics, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Sreekantha B Jonnalagadda
- School of Chemistry and Physics, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
10
|
Zhu Y, Yang J, Liu X, Wang J, Ping Q, Du Z, Li J, Zang T, Mei H, Xu Y. Two POM-based compounds containing Zn-capped Keggin anions as decent heterogeneous catalysts for sulfur oxidation and cycloaddition of CO2 reactions. Dalton Trans 2022; 51:3502-3511. [DOI: 10.1039/d1dt04348j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon dioxide (CO2) and the combustion of sulfide in gasoline are the main causes of air pollution. Great deal of attention has been committed to solving the problem and the...
Collapse
|
11
|
Musa SG, Aljunid Merican ZM, Akbarzadeh O. Study on Selected Metal-Organic Framework-Based Catalysts for Cycloaddition Reaction of CO 2 with Epoxides: A Highly Economic Solution for Carbon Capture and Utilization. Polymers (Basel) 2021; 13:3905. [PMID: 34833202 PMCID: PMC8619864 DOI: 10.3390/polym13223905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022] Open
Abstract
The level of carbon dioxide in the atmosphere is growing rapidly due to fossil fuel combustion processes, heavy oil, coal, oil shelter, and exhausts from automobiles for energy generation, which lead to depletion of the ozone layer and consequently result in global warming. The realization of a carbon-neutral environment is the main focus of science and academic researchers of today. Several processes were employed to minimize carbon dioxide in the air, some of which include the utilization of non-fossil sources of energy like solar, nuclear, and biomass-based fuels. Consequently, these sources were reported to have a relatively high cost of production and maintenance. The applications of both homogeneous and heterogeneous processes in carbon capture and storage were investigated in recent years and the focus now is on the conversion of CO2 into useful chemicals and compounds. It was established that CO2 can undergo cycloaddition reaction with epoxides under the influence of special catalysts to give cyclic carbonates, which can be used as value-added chemicals at a different level of pharmaceutical and industrial applications. Among the various catalysts studied for this reaction, metal-organic frameworks are now on the frontline as a potential catalyst due to their special features and easy synthesis. Several metal-organic framework (MOF)-based catalysts were studied for their application in transforming CO2 to organic carbonates using epoxides. Here, we report some recent studies of porous MOF materials and an in-depth discussion of two repeatedly used metal-organic frameworks as a catalyst in the conversion of CO2 to organic carbonates.
Collapse
Affiliation(s)
- Suleiman Gani Musa
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia;
- Department of Chemistry, Al-Qalam University Katsina, PMB 2137, Tafawa Balewa Way, Dutsin-ma Road, Katsina 820252, Nigeria
| | - Zulkifli Merican Aljunid Merican
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia;
- Institute of Contaminant Management for Oil & Gas, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
| | - Omid Akbarzadeh
- Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
12
|
Yin Y, Xin Z, Yang H, Xu G, Liu Y, LI X. Synthesis of a 2,4-DcCoPc/MIL-101(Fe) composite and catalytic oxidation of styrene to benzaldehyde. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1910679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yanbing Yin
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Zhaosong Xin
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Hang Yang
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Guopeng Xu
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Yang Liu
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Xiaolong LI
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| |
Collapse
|
13
|
Kumari S, Ramesh A, Das B, Ray S. Zeolite-Y encapsulated cobalt(ii) Schiff-base complexes employed for photocatalytic dye-degradation and upcycling CO2. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01190h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Planar cobalt(ii) Schiff-base complexes show modified structural and functional properties after encapsulation inside zeolite-Y.
Collapse
Affiliation(s)
| | | | - Bidisa Das
- Technical Research Center (TRC) & School of Applied and Interdisciplinary Sciences (SAIS)
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Saumi Ray
- Birla Institute of Technology and Science
- Pilani
- India
| |
Collapse
|