1
|
Ampawan S, Dairoop J, Keawbanjong M, Chinpa W. A floating biosorbent of polylactide and carboxylated cellulose from biomass for effective removal of methylene blue from water. Int J Biol Macromol 2024; 266:131354. [PMID: 38574933 DOI: 10.1016/j.ijbiomac.2024.131354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/17/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
A floating adsorbent bead was prepared from polylactide (PLA) and maleic anhydride (MAH)-modified cellulose in a one-pot process (OP bead). Cellulose was extracted from waste lemongrass leaf (LGL) and modified with MAH in the presence of dimethylacetamide (DMAc). PLA was then added directly into the system to form sorbent beads by a phase separation process that reused unreacted MAH and DMAc as a pore former and a solvent, respectively. The chemical modification converted cellulose macrofibres (55.1 ± 31.5 μm) to microfibers (8.8 ± 1.5 μm) without the need for grinding. The OP beads exhibited more and larger surface pores and greater thermal stability than beads prepared conventionally. The OP beads also removed methylene blue (MB) more effectively, with a maximum adsorption capacity of 86.19 mg⋅g-1. The adsorption of MB on the OP bead fitted the pseudo-second order and the Langmuir isotherm models. The OP bead was reusable over five adsorption cycles, retaining 88 % of MB adsorption. In a mixed solution of MB and methyl orange (MO), the OP bead adsorbed 96 % of the cationic dye MB while repelling the anionic dye MO. The proposed method not only reduced time, energy and chemical consumption, but also enabled the fabrication of a green, effective and easy-to-use biosorbent.
Collapse
Affiliation(s)
- Sasimaporn Ampawan
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Jiratchaya Dairoop
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Mallika Keawbanjong
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Watchanida Chinpa
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
2
|
Nguyen DTC, Jalil AA, Hassan NS, Nguyen LM, Nguyen DH, Tran TV. Optimization of hydrothermal synthesis conditions of Bidens pilosa-derived NiFe 2O 4@AC for dye adsorption using response surface methodology and Box-Behnken design. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32691-6. [PMID: 38468003 DOI: 10.1007/s11356-024-32691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/25/2024] [Indexed: 03/13/2024]
Abstract
The presence of stable and hazardous organic dyes in industrial effluents poses significant risks to both public health and the environment. Activated carbons and biochars are widely used adsorbents for removal of these pollutants, but they often have several disadvantages such as poor recoverability and inseparability from water in the post-adsorption process. Incorporating a magnetic component into activated carbons can address these drawbacks. This study aims to optimizing the production of NiFe2O4-loaded activated carbon (NiFe2O4@AC) derived from a Bidens pilosa biomass source through a hydrothermal method for the adsorption of Rhodamine B (RhB), methyl orange (MO), and methyl red (MR) dyes. Response surface methodology (RSM) and Box-Behnken design (BBD) were applied to analyze the key synthesis factors such as NiFe2O4 loading percentage (10-50%), hydrothermal temperature (120-180 °C), and reaction time (6-18 h). The optimized condition was found at a NiFe2O4 loading of 19.93%, a temperature of 135.55 °C, and a reaction time of 16.54 h. The optimum NiFe2O4@AC demonstrated excellent sorption efficiencies of higher than 92.98-97.10% against all three dyes. This adsorbent was characterized, exhibiting a well-developed porous structure with a high surface area of 973.5 m2 g-1. Kinetic and isotherm were studied with the best fit of pseudo-second-order, and Freundlich or Temkin. Qmax values were determined to be 204.07, 266.16, and 177.70 mg g-1 for RhB, MO, and MR, respectively. By selecting HCl as an elution, NiFe2O4@AC could be efficiently reused for at least 4 cycles. Thus, the Bidens pilosa-derived NiFe2O4@AC can be a promising material for effective and recyclable removal of dye pollutants from wastewater.
Collapse
Affiliation(s)
- Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Johor, Malaysia
| | - Aishah Abdul Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Johor, Malaysia.
- Centre of Hydrogen Energy, Institute of Future Energy, 81310 UTM Johor Bahru, Johor, Malaysia.
| | - Nurul Sahida Hassan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Johor, Malaysia
| | - Luan Minh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29, District 12, Ho Chi Minh City, 700000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Dai Hai Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29, District 12, Ho Chi Minh City, 700000, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Johor, Malaysia
| |
Collapse
|
3
|
Zhang KY, Li D, Wang Y, Wang LJ. Carboxymethyl chitosan/polyvinyl alcohol double network hydrogels prepared by freeze-thawing and calcium chloride cross-linking for efficient dye adsorption. Int J Biol Macromol 2023; 253:126897. [PMID: 37709214 DOI: 10.1016/j.ijbiomac.2023.126897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The discharge of dye wastewater resulting from rapid industrial development has become a serious environmental concern. Therefore, there is a pressing need to develop efficient methods and technologies for the removal of dye pollutants. This study introduced a double network hydrogel, with varying carboxymethyl chitosan (CMCS) contents and polyvinyl alcohol (PVA), employing a combination of freeze- thawing and calcium chloride cross-linking. The investigation focused on the rheological properties of the hydrogels and their removal ability of acidic blue 93 (AB). The results showed that the strength and viscoelastic modulus of composite hydrogels were positively correlated with the CMCS content, and all composite hydrogels exhibited the typical weak strain overshoot behavior. The pore size of the gel initially decreased and then increased, with the densest pores observed at 4 wt% CMCS, showing the optimal removal ability for AB. The adsorption process followed pseudo second-order kinetic model, dominated by external diffusion, and exhibited inhomogeneous multilayer adsorption. This study unveils the potential of CMCS/PVA gels as adsorbents, offering inspirations for the design and development of polyvinyl alcohol-based gels for applications in the food industry.
Collapse
Affiliation(s)
- Kai-Yan Zhang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China.
| |
Collapse
|
4
|
Optimization of a Binary Dye Mixture Adsorption by Moroccan Clay Using the Box-Behnken Experimental Design. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Dhar AK, Himu HA, Bhattacharjee M, Mostufa MG, Parvin F. Insights on applications of bentonite clays for the removal of dyes and heavy metals from wastewater: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5440-5474. [PMID: 36418828 DOI: 10.1007/s11356-022-24277-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
In recent decades, increased industrial, agricultural, and domestic activities have resulted in the release of various pollutants into the aquatic systems, which require a reliable and environmentally friendly method to remove them. Adsorption is one of the most cost-effective and sustainable wastewater treatment techniques. A plethora of low-cost bio-based adsorbents have been developed worldwide so far to supplant activated carbon and its high processing costs. Bentonite clays (BCs), whether in natural or modified form, have gained enormous potential in wastewater treatment and have been used successfully as a novel and cost-effective bio-sorbent for removing organic and inorganic pollutants from the liquid suspension. It has become a sustainable solution for wastewater treatment due to its variety of surface and structural properties, superior chemical stability, high capacity for cation exchange, elevated surface area due to its layered structure, non-toxicity, abundance, low cost, and high adsorption capacity compared to other clays. This review encompasses comprehensive literature about various modification techniques and adsorption mechanisms of BCs concerning dyes and heavy metal removal from wastewater. A critical overview of different parameters for optimizing adsorption capacity and regeneration via the desorption technique has also been presented here. Finally, a conclusion has been drawn with some future research recommendations based on technological challenges encountered in industrializing these materials.
Collapse
Affiliation(s)
- Avik Kumar Dhar
- Department of Textiles, Merchandising, and Interiors, University of Georgia, 321 Dawson Hall, 305 Sanford Drive, Athens, GA-30602, USA.
| | - Humayra Akhter Himu
- Department of Environmental Science & Engineering, Bangladesh University of Textiles, Tejgaon, Dhaka-1208, Bangladesh
| | - Maitry Bhattacharjee
- Department of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA-30602, USA
| | - Md Golam Mostufa
- Department of Textile Engineering, Shyamoli Textile Engineering College, Dhaka, 1207, Bangladesh
| | - Fahmida Parvin
- Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| |
Collapse
|
6
|
Dynamics of Diffusion- and Immobilization-Limited Photocatalytic Degradation of Dyes by Metal Oxide Nanoparticles in Binary or Ternary Solutions. Catalysts 2022. [DOI: 10.3390/catal12101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Photocatalytic degradation employing metal oxides, such as TiO2 nanoparticles, as catalysts is an important technique for the removal of synthetic dyes from wastewater under light irradiation. The basic principles of photocatalysis of dyes, the effects of the intrinsic photoactivity of a catalyst, and the conventional non-fundamental factors are well established. Recently reported photocatalysis studies of dyes in single, binary, and ternary solute solutions opened up a new perspective on competitive photocatalytic degradation of the dyes. There has not been a review on the photocatalytic behavior of binary or ternary solutions of dyes. In this regard, this current review article summarizes the photocatalytic behavior of methylene, rhodamine B, and methyl orange in their binary or ternary solutions. This brief overview introduces the importance of the dynamics of immobilization and reactivity of the dyes, the vital roles of molecular conformation and functional groups on their diffusion onto the catalyst surface, and photocatalytic degradation, and provides an understanding of the simultaneous photocatalytic processes of multiple dyes in aqueous systems.
Collapse
|
7
|
Hong X, Mu R, Lin T, Dao L, Wu S, Yan Z, Pang J. Preparation of konjac glucomannan/ZIF-67 hybrid aerogel and its adsorption properties for malachite green. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Asbollah MA, Sahid MSM, Shahrin EWES, Narudin NAH, Kusrini E, Shahri NNM, Hobley J, Usman A. Dynamics and thermodynamics for competitive adsorptive removal of methylene blue and rhodamine B from binary aqueous solution onto durian rind. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:645. [PMID: 35930088 DOI: 10.1007/s10661-022-10332-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Concurrent adsorptive removal of methylene blue (MB) and rhodamine B (RhB) onto durian rind (DR) agricultural waste, from an aqueous binary solution as a model of wastewater containing multiple synthetic dyes, was investigated. The concurrent adsorption of the dyes followed pseudo-second-order kinetics. The adsorption isotherm was well simulated by the Langmuir model, implying a monolayer adsorption to the surface with a homogeneous binding energy. The adsorption process was governed by external mass transfer through two-step intraparticle diffusion of the dyes onto the adsorbent surface. The adsorption efficiency of MB (96.4%) is much higher than that of RhB (56.3%). This is attributed to the higher rate constant for the adsorption of MB (0.348 g mg-1 min-1) as compared to that of RhB (0.151 g mg-1 min-1). The adsorption behavior suggested that the two cationic dyes in the binary solution diffused and adsorbed independently and randomly onto the DR surface. The adsorption capacity of MB and RhB in the binary solution (47.4 mg g-1 and 32.9 mg g-1, respectively) is lower than those of their single solute solutions (93.3 mg g-1 and 62.8 mg g-1, respectively), suggesting a competitive effect in their concurrent adsorption. This was confirmed based on the adsorption characteristics of the binary solution with different molar ratios. The competitive effect was attributed to either non-interactive or repulsive electrostatic interactions between the positively charged dyes in the binary system. The domination of MB is attributed to its smaller molecular size, higher planarity, and faster adsorption kinetics compared with RhB.
Collapse
Affiliation(s)
- M Ashrul Asbollah
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Mohd Syaadii Mohd Sahid
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Ensan Waatriah E S Shahrin
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Nur Alimatul Hakimah Narudin
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Eny Kusrini
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI, 16424, Depok, Indonesia
| | - Nurulizzatul Ningsheh M Shahri
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Jonathan Hobley
- Department of Biomedical Engineering, National Cheng Kung University, 1, University Road, Tainan City, 701, Taiwan
| | - Anwar Usman
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam.
| |
Collapse
|
9
|
Franco DS, da Boit Martinello K, Georgin J, Netto MS, Foletto EL, Silva LF, dos Reis GS, Dotto GL. Pore volume and surface diffusion model (PVSDM) applied for single and binary dye adsorption systems. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Sridhar A, Ponnuchamy M, Kapoor A, Prabhakar S. Valorization of food waste as adsorbents for toxic dye removal from contaminated waters: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127432. [PMID: 34688000 DOI: 10.1016/j.jhazmat.2021.127432] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/09/2021] [Accepted: 10/02/2021] [Indexed: 05/07/2023]
Abstract
Industrial contaminants such as dyes and intermediates are released into water bodies, making the water unfit for human use. At the same time large amounts of food wastes accumulate near the work places, residential complexes etc. polluting the air due to putrefaction. The need of the hour lies in finding innovative solutions for dye removal from wastewater streams. In this context, the article emphasizes adoption or conversion of food waste materials, an ecological nuisance, as adsorbents for the removal of dyes from wastewaters. Adsorption, being a well-established technique, the review critically examines the specific potential of food waste constituents as dye adsorbents. The efficacy of food waste-based adsorbents is examined, besides addressing the possible adsorption mechanisms and the factors affecting phenomenon such as pH, temperature, contact time, adsorbent dosage, particle size, and ionic strength. Integration of information and communication technology approaches with adsorption isotherms and kinetic models are emphasized to bring out their role in improving overall modeling performance. Additionally, the reusability of adsorbents has been highlighted for effective substrate utilization. The review makes an attempt to stress the valorization of food waste materials to remove dyes from contaminated waters thereby ensuring long-term sustainability.
Collapse
Affiliation(s)
- Adithya Sridhar
- School of Food Science and Nutrition, Faculty of Environment, The University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Ashish Kapoor
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India.
| | - Sivaraman Prabhakar
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| |
Collapse
|
11
|
Wang H, Liu C, Ma X, Wang Y. Porous multifunctional phenylcarbamoylated-β-cyclodextrin polymers for rapid removal of aromatic organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13893-13904. [PMID: 34599452 DOI: 10.1007/s11356-021-16656-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
In this work, polymers containing a large number of benzene rings and multiple functional groups were designed to remove aromatic organic pollutants. Using tetrafluoroterephthalonitrile (TFTPN) as a rigid crosslinking agent to crosslink different functionalized phenylcarbamoylated-β-cyclodextrin derivatives to prepare a series of porous multifunctional cyclodextrin (CD) polymerizations, including three preliminary polymerized adsorption materials and a mix β-cyclodextrin polymer (X-CDP) prepared via a secondary crosslinking procedure of the above three materials. The X-CDP preparation process connects the pre-formed nanoparticles and increases the presence of linkers inside the particles. At the same time, X-CDP exhibited porous structure with various functional groups such as nitro, chlorine, fluorine, and hydroxyl. Those special characteristics render this material with good adsorption ability towards various aromatic organic pollutants in water, including tetracycline, ibuprofen, dichlorophenol, norfloxacin, bisphenol A, and naphthol. Especially, the maximum adsorption capacity for tetracycline at equilibrium reached 110.56 mg·g-1, which is competitive with the adsorption capacities of other polysaccharide adsorbents. X-CDP removed organic contaminants much more quickly than other adsorbents, reaching almost ~95% of its equilibrium in only 30 s, and the rate constant reaches 2.32 g·mg-1·min-1. The main adsorption process of the pollutants by X-CDP fitted the pseudo-second-order kinetic and Langmuir isotherm well, indicating that the adsorption process is monolayer adsorption. Moreover, X-CDP possessed the good reusability where the pollutant removal rate was only reduced 8.3% after five cycles. Such advantages render the polymer great potential in the rapid treatment of organic pollutants in water bodies.
Collapse
Affiliation(s)
- He Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Congzhi Liu
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Xiaofei Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China.
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China.
| |
Collapse
|
12
|
Removal of Toluidine Blue and Safranin O from Single and Binary Solutions Using Zeolite. CRYSTALS 2021. [DOI: 10.3390/cryst11101181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The studies on dye removal from solutions attracted great attention due to the increased use of color dyes in different fields. However, most of the studies were focused on dye removal from a single solution. In reality, wastewater from the fabric industry could contain mixed dyes. As such, evaluating different dye removal from mixed solutions may have more practical importance. In terms of sorbents evaluated for dye removal, most of them were an organic type generated from agricultural wastes. Clay minerals and zeolites were also studied extensively, because of the vast reserves, inexpensive material cost, larger specific surface area (SSA) and high cation exchange capacity (CEC). However, evaluating the factors controlling the dye removal from mixed dye solutions was limited. In this study, the removal of cationic dyes safranin O (SO) and toluidine blue (TB) by clinoptilolite zeolite (ZEO) was evaluated under single and binary systems. The results showed that removal of TB was preferred over SO by approximately a 2:1 ratio. The counterion Cl− sorption from mixed dye solution helped the formation of mixed dye aggregates on mineral surfaces. Molecular dynamic simulation confirmed the multilayer mixed dye formation on ZEO under high loading levels.
Collapse
|
13
|
Zhao Y, Yang H, Sun J, Zhang Y, Xia S. Enhanced Adsorption of Rhodamine B on Modified Oil-Based Drill Cutting Ash: Characterization, Adsorption Kinetics, and Adsorption Isotherm. ACS OMEGA 2021; 6:17086-17094. [PMID: 34250365 PMCID: PMC8264943 DOI: 10.1021/acsomega.1c02214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/17/2021] [Indexed: 05/13/2023]
Abstract
In this paper, phosphoric acid (H3PO4), hydrochloric acid (HCl), and hydrogen peroxide (H2O2) were employed for the modification of oil-based drill cutting ash (OBDCA) for the first time. The adsorption of rhodamine B (RhB) on modified oil-based drill cutting ash (MOBDCA) in an aqueous medium was investigated. H2O2-modified OBDCA had the optimal adsorption efficiency for RhB. The physical and chemical properties of MOBDCA were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ζ-potential, N2 adsorption-desorption isotherm, and pore size distribution. The effect of the pH value (3-11), reaction time (10-720 min), and initial RhB concentration (10-200 mg/L) on RhB adsorption was discussed. The adsorption kinetics highly fitted with the pseudo-second-order model (R 2 > 0.99), which indicated that the adsorption process was dominated by chemisorption. The adsorption isotherm fitted well with the Langmuir and Freundlich models (R 2 > 0.97), which indicated the monolayer adsorption process and the heterogeneous adsorption process, respectively. The theoretic adsorption capacity (50 mg/g) for RhB was achieved by H2O2-modified OBDCA. This paper provides a promising method of resource utilization of OBDCA to treat organic pollutants.
Collapse
Affiliation(s)
- Yuqing Zhao
- School
of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
- College
of Ecology and Environment, Hubei Vocational
College of Ecological Engineering, Wuhan 430200, China
- State
Key Laboratory of Freshwater Ecology and Biotechnology, Institute
of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hang Yang
- School
of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jianfa Sun
- China
Petroleum & Chemical Corporation, Jianghan Oilfield, Branch No. 1 Gas Production Plant, Lichuan 445400, China
| | - Yi Zhang
- State
Key Laboratory of Freshwater Ecology and Biotechnology, Institute
of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shibin Xia
- School
of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
14
|
Doan HV, Nguyen HT, Ting VP, Guan S, Eloi JC, Hall SR, Pham XN. Improved photodegradation of anionic dyes using a complex graphitic carbon nitride and iron-based metal-organic framework material. Faraday Discuss 2021; 231:81-96. [PMID: 34196340 DOI: 10.1039/d1fd00010a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Introducing heterostructures to graphitic carbon nitrides (g-C3N4) can improve the activity of visible-light-driven catalysts for the efficient treatment of multiple toxic pollutants in water. Here, we report for the first time that a complex material can be constructed from oxygen-doped g-C3N4 and a MIL-53(Fe) metal-organic framework using facile hydrothermal synthesis and recycled polyethylene terephthalate from plastic waste. The novel multi-walled nanotube structure of the O-g-C3N4/MIL-53(Fe) composite, which enables the unique interfacial charge transfer at the heterojunction, showed an obvious enhancement in the separation efficiency of the photochemical electron-hole pairs. This resulted in a narrow bandgap energy (2.30 eV, compared to 2.55 eV in O-g-C3N4), high photocurrent intensity (0.17 mA cm-2, compared to 0.12 mA cm-2 and 0.09 mA cm-2 in MIL-53(Fe) and O-g-C3N4, respectively) and excellent catalytic performance in the photodegradation of anionic azo dyes (95% for RR 195 and 99% for RY 145 degraded after 4 h, and only a minor change in the efficiency observed after four consecutive tests). These results demonstrate the development of new catalysts made from waste feedstocks that show high stability, ease of fabrication and can operate in natural light for environmental remediation.
Collapse
Affiliation(s)
- Huan V Doan
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK and Department of Chemical Engineering, Hanoi University of Mining and Geology, 18 Pho Vien, Duc Thang, Bac Tu Liem, Hanoi, Vietnam.
| | - Hoa Thi Nguyen
- Department of Chemical Engineering, Hanoi University of Mining and Geology, 18 Pho Vien, Duc Thang, Bac Tu Liem, Hanoi, Vietnam.
| | - Valeska P Ting
- Department of Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, UK
| | - Shaoliang Guan
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK and HarwellXPS, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | | | - Simon R Hall
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Xuan Nui Pham
- Department of Chemical Engineering, Hanoi University of Mining and Geology, 18 Pho Vien, Duc Thang, Bac Tu Liem, Hanoi, Vietnam.
| |
Collapse
|
15
|
Adsorption efficiency of sulfonated poly (ether ether ketone) (sPEEK) as a novel low-cost polymeric adsorbent for cationic organic dyes removal from aqueous solution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|