1
|
Onajah S, Sarkar R, Islam MS, Lalley M, Khan K, Demir M, Abdelhamid HN, Farghaly AA. Silica-Derived Nanostructured Electrode Materials for ORR, OER, HER, CO 2RR Electrocatalysis, and Energy Storage Applications: A Review. CHEM REC 2024; 24:e202300234. [PMID: 38530060 DOI: 10.1002/tcr.202300234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/13/2024] [Indexed: 03/27/2024]
Abstract
Silica-derived nanostructured catalysts (SDNCs) are a class of materials synthesized using nanocasting and templating techniques, which involve the sacrificial removal of a silica template to generate highly porous nanostructured materials. The surface of these nanostructures is functionalized with a variety of electrocatalytically active metal and non-metal atoms. SDNCs have attracted considerable attention due to their unique physicochemical properties, tunable electronic configuration, and microstructure. These properties make them highly efficient catalysts and promising electrode materials for next generation electrocatalysis, energy conversion, and energy storage technologies. The continued development of SDNCs is likely to lead to new and improved electrocatalysts and electrode materials. This review article provides a comprehensive overview of the recent advances in the development of SDNCs for electrocatalysis and energy storage applications. It analyzes 337,061 research articles published in the Web of Science (WoS) database up to December 2022 using the keywords "silica", "electrocatalysts", "ORR", "OER", "HER", "HOR", "CO2RR", "batteries", and "supercapacitors". The review discusses the application of SDNCs for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2RR), supercapacitors, lithium-ion batteries, and thermal energy storage applications. It concludes by discussing the advantages and limitations of SDNCs for energy applications.
Collapse
Affiliation(s)
- Sammy Onajah
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, 60439, United States
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Rajib Sarkar
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia, 23284-2006, United States
| | - Md Shafiul Islam
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, 60439, United States
| | - Marja Lalley
- Department of Chemistry, University of Chicago, Chicago, Illinois, 60637, United States
| | - Kishwar Khan
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Muslum Demir
- Department of Chemical Engineering, Bogazici University, 34342, Istanbul, Turkey
- TUBITAK Marmara Research Center, Material Institute, Gebze, 41470, Turkey
| | - Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Assiut University, Assiut, 71516, Egypt
- Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Ahmed A Farghaly
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, 60439, United States
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
2
|
Zhang Y, Mei Y, Ma S, Yang Y, Deng X, Guan Y, Zhao T, Jiang B, Yao T, Yang Q, Wu J. A simple and green method to prepare non-typical yolk/shell nanoreactor with dual-shells and multiple-cores: Enhanced catalytic activity and stability in Fenton-like reaction. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129234. [PMID: 35739754 DOI: 10.1016/j.jhazmat.2022.129234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, non-typical yolk/shell structure has drawn much attentions due to the better catalytic performance than traditional counterparts (one yolk/one shell). In this study, ZIF-67 @Co2SiO4/SiO2 yolk/shell structure was prepared in one-step at room temperature, in which ZIF-67 was served as the hard-template, H2O was served as etchant and tetraethyl orthosilicat was served as the raw material for Co2SiO4/SiO2. After calcination, the non-typical CoxOy @Co2SiO4/SiO2 yolk/shell nanoreactor with Co2SiO4/SiO2 dual-shells and CoxOy multiple-cores was obtained. On the one hand, more active sites were exposed on multiple-cores surface and better protection were provided by dual-shells. On the other hand, the sheet-like Co2SiO4 inner shell not only extended the travel path and retention time of pollutants trapped in cavity, but also separated the multiple-cores from aggregation. Therefore, the nanoreactor displayed the outstanding catalytic activity and recyclability in Fenton-like reaction. Metronidazole (20 mg/L) was completely degraded after 30 min, rhodamine B (50 mg/L) and methyl orange (20 mg/L) were removed even within 5.0 min. Catalytic mechanism indicated that 1O2 greatly contributed to the pollutant degradation. This paper presented a simple, versatile, green and energy-saving method for non-typical yolk/shell nanoreactor, and it could inspire to prepare other catalysts with high activity and stability for environmental remediation.
Collapse
Affiliation(s)
- Yanqiu Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yuqing Mei
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Shouchun Ma
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yang Yang
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xianhe Deng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yina Guan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Tingting Zhao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Tongjie Yao
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Qingfeng Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Jie Wu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
3
|
Hu T, Wang Y, Dong X, Mu Y, Pei X, Jing X, Cui M, Meng C, Zhang Y. Cobalt silicate: critical synthetic conditions affect its electrochemical properties for energy storage and conversion. Dalton Trans 2022; 51:2815-2826. [PMID: 35088786 DOI: 10.1039/d1dt03818d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt silicate (CoSi) is a promising electrode material for supercapacitors (SCs) and an electrocatalytic material for the oxygen evolution reaction (OER). How to synthesize cobalt silicate with excellent energy storage and OER properties has not been reported and it is a great challenge for researchers to accomplish it. In this work, we find that the electrochemical properties of CoSi are particularly affected by critical factors during the synthesis process. Three types of CoSi compounds are synthesized using Stöber SiO2 as the self-sacrificing template via a hydrothermal reaction. The CoSi compounds generated from different reaction systems have obvious differences in the macrostate, microscopic morphology, composition and valence, leading to different electrochemical performances for energy storage and OER properties. The findings reveal that the differences (especially valence) among CoSi are determined by the formation of the metal source in the reaction system. The specific capacitance of CoSi-3 obtained from the system with basic salts as the metal source is eight times higher than that of CoSi-1 obtained from the system with coordination compounds as the metal source, whereas CoSi-1 has a greater advantage in electrocatalytic activity. This work provides insight for the synthesis of cobalt silicates applied to energy storage and conversion.
Collapse
Affiliation(s)
- Tao Hu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Yang Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Xueying Dong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Yang Mu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Xiaoyu Pei
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Xuyang Jing
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Miao Cui
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Changgong Meng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Yifu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
4
|
Fabrication of Phosphorus-Doped Cobalt Silicate with Improved Electrochemical Properties. Molecules 2021; 26:molecules26206240. [PMID: 34684820 PMCID: PMC8539304 DOI: 10.3390/molecules26206240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022] Open
Abstract
The development of electrode materials for supercapacitors (SCs) is greatly desired, and this still poses an immense challenge for researchers. Cobalt silicate (Co2SiO4, denoted as CoSi) with a high theoretical capacity is deemed to be one of the sustainable electrode materials for SCs. However, its achieved electrochemical properties are still not satisfying. Herein, the phosphorus (P)-doped cobalt silicate, denoted as PCoSi, is synthesized by a calcining strategy. The PCoSi exhibits 1D nanobelts with a specific surface area of 46 m2∙g−1, and it can significantly improve the electrochemical properties of CoSi. As a supercapacitor’s (SC’s) electrode, the specific capacitance of PCoSi attains 434 F∙g−1 at 0.5 A∙g−1, which is much higher than the value of CoSi (244 F∙g−1 at 0.5 A∙g−1). The synergy between the composition and structure endows PCoSi with attractive electrochemical properties. This work provides a novel strategy to improve the electrochemical performances of transition metal silicates.
Collapse
|
5
|
Pan J, Li S, Li F, Yu T, Liu Y, Zhang L, Ma L, Sun M, Tian X. The NiFe2O4/NiCo2O4/GO composites electrode material derived from dual-MOF for high performance solid-state hybrid supercapacitors. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125650] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|