1
|
Molecular dynamics simulations and quantitative calculations on photo-responsive behavior of wormlike micelles constructed by gemini surfactant 12–3-12·2Br− and cinnamates with different ortho-substituents. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Liu W, Ye Z, Chen Q, Huang X, Shang Y, Liu H, Meng H, He Y, Dong Y. Effect of the Substituent Position on the Phase Behavior and Photoresponsive Dynamic Behavior of Mixed Systems of a Gemini Surfactant and trans-Methoxy Sodium Cinnamates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9518-9531. [PMID: 34333982 DOI: 10.1021/acs.langmuir.1c01372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mixed systems of the Gemini cationic surfactant trimethylene-1,3-bis (dodecyldimethylammonium bromide) (12-3-12·2Br-) and the photosensitive additives trans-methoxy sodium cinnamates with different substituent positions (trans-ortho-methoxy cinnamate, trans-OMCA; trans-meta-methoxy cinnamate, trans-MMCA; and trans-para-methoxy cinnamate, trans-PMCA) were selected for investigating the effects of the substituting position of methoxy on the system phase diagram and UV light-responsive behavior of the wormlike micelles. The differences in phase behaviors of the selected systems were analyzed by calculating the potential distribution, molecular volume, and free energy of solvation of cinnamates and the binding energies between photosensitive additives and the surfactant. The photoresponsive behaviors of wormlike micelle solutions formed in the selected systems were studied by the rheological method and UV-vis and H nuclear magnetic resonance (1H NMR) spectroscopy; the kinetics of photoisomerization of trans-OMCA, trans-MMCA, and trans-PMCA were studied by first-order derivative spectrophotometry. The results reveal that the methoxy substituent position has a great influence on the phase behavior and photosensitivity of the studied systems. In addition, the photoisomerization of the studied cinnamates follows the first-order opposite reaction laws; the different reaction rates play the decisive role in the photosensitivity of the wormlike micelles. This paper would afford a deeper understanding of the UV light-responsive mechanism at the molecular level and provide essential guidance in preparing smart materials with adjustable light sensitivity.
Collapse
Affiliation(s)
- Wenxiu Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhicheng Ye
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qizhou Chen
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiangrong Huang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hong Meng
- Key Laboratory of Cosmetic, China National Light Industry, School of Science, Beijing Technology and Business University, Beijing 100048, China
| | - Yifan He
- Key Laboratory of Cosmetic, China National Light Industry, School of Science, Beijing Technology and Business University, Beijing 100048, China
| | - Yinmao Dong
- Key Laboratory of Cosmetic, China National Light Industry, School of Science, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|