1
|
Muthukumaran T, Philip J. A review on synthesis, capping and applications of superparamagnetic magnetic nanoparticles. Adv Colloid Interface Sci 2024; 334:103314. [PMID: 39504854 DOI: 10.1016/j.cis.2024.103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/09/2024] [Accepted: 10/12/2024] [Indexed: 11/08/2024]
Abstract
Magnetic nanoparticles (MNPs) have garnered significant attention from researchers due to their numerous technologically significant applications in diverse fields, including biomedicine, diagnostics, agriculture, optics, mechanics, electronics, sensing technology, catalysis, and environmental remediation. The superparamagnetic nature of MNP is exploited for many applications and remains fascinating to study many fundamental phenomena. The uniqueness of this review is that it gives an in-depth review of different synthesis approaches adopted for preparing magnetic nanoparticles and nanoparticle formation mechanisms, functionalizing them with different capping agents, and applying different functionalized magnetic nanoparticles. The important synthesis techniques covered include coprecipitation, microwave-assisted, sonochemical, sol-gel, microemulsion, hydrothermal/solvothermal, thermal decomposition, and mechano-chemical synthesis. Further, the advantages and disadvantages of each technique are discussed, and tables show important results of prepared particles. Other aspects covered in this review are the dispersion of magnetic nanoparticles in the continuous matrix, the influence of surface capping on high-temperature thermal stability, the long-term stability of ferrofluids, and applications of functionalized magnetic nanoparticles. For effective utilization of the ferrite nanoparticles, it is essential to formulate thermally and colloidally stable magnetic nanoparticles with desired magnetic properties. Capping enhances the phase transition temperature and long-term colloidal stability. Magnetic nanoparticles capped or functionalized with specific binding species, specific components like drugs, or other functional groups make them suitable for applications in biotechnology/biomedicine. Recent studies reveal the tremendous scope of MNPs in therapeutics and theranostics. The requirements for nanoparticle size, morphology, and physio-chemical properties, especially magnetic properties, functionalization, and stability, vary with applications. There are also challenges for precise size control and the cost-effective production of nanoparticles in large quantities. The review should be an ideal material for researchers working on magnetic nanomaterials and an excellent reference for freshers.
Collapse
Affiliation(s)
- T Muthukumaran
- Smart Materials Section, MCG, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, Tamil Nadu, India
| | - John Philip
- Smart Materials Section, MCG, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, Tamil Nadu, India; Department of Physics, Cochin University of Science and Technology, Kochi -22, India.
| |
Collapse
|
2
|
Sajid MM, Zhai H, Shad NA, Alomayri T, Hassan MA, Javed Y, Amin N, Zhang Z, Sillanpaa M, Iqbal MA. Synthesis of novel Fe doped MoS2/BiVO4 magnetic composite for enhanced photocatalytic and antimicrobial activity. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
3
|
Li Y, Huang M, Oh WD, Wu X, Zhou T. Efficient activation of sulfite for reductive-oxidative degradation of chloramphenicol by carbon-supported cobalt ferrite catalysts. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
4
|
Philip J. Magnetic nanofluids (Ferrofluids): Recent advances, applications, challenges, and future directions. Adv Colloid Interface Sci 2023; 311:102810. [PMID: 36417827 DOI: 10.1016/j.cis.2022.102810] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
Impelled by the need to find solutions to new challenges of modern technologies new materials with unique properties are being explored. Among various new materials that emerged over the decades, magnetic fluids exhibiting interesting physiochemical properties (optical, thermal, magnetic, rheological, apparent density, etc.) under a magnetic stimulus have been at the forefront of research. In the initial phase, there has been a fervent scientific curiosity to understand the field-induced intriguing properties of such fluids but later a plethora of technological applications emerged. Magnetic nanofluid, popularly known as ferrofluid, is a colloidal suspension of fine magnetic nanoparticles, has been at the forefront of research because of its magnetically tunable physicochemical properties and applications. Due to their stimuli-responsive behaviour, they have been finding more applications in biology and other engineering disciplines in recent years. Therefore, a critical review of this topic highlighting the necessary background, the potential of this material for emerging technologies, and the latest developments is warranted. This review also provides a summary of various applications, along with the key challenges and future research directions. The first part of the review addresses the different types of magnetic fluids, the genesis of magnetic fluids, their synthesis methodologies, properties, and stabilization techniques are discussed in detail. The second part of the review highlights the applications of magnetic nanofluids and nanoemulsions (as model systems) in probing order-disorder transitions, scattering, diffraction, magnetically reconfigurable internal structures, molecular interaction, and weak forces between colloidal particles, conformational changes of macromolecules at interfaces and polymer-surfactant complexation at the oil-water interface. The last part of the review summarizes the interesting applications of magnetic fluids such as heat transfer, sensors (temperature, pH, urea detection, cations, defect detection sensors), tunable optical filters, removal of dyes, dynamic seals, magnetic hyperthermia-based cancer therapy and other biomedical applications. The applications of magnetic nanofluids in diverse disciplines are growing day by day, yet there are challenges in their practical adaptation as field-worthy or packaged products. This review provides a pedagogical description of magnetic fluids, with the necessary background, key concepts, physics, experimental protocols, design of experiments, challenges and future directions.
Collapse
Affiliation(s)
- John Philip
- Smart Materials Section, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India.
| |
Collapse
|
5
|
Formation Mechanism and Lattice Parameter Investigation for Copper-Substituted Cobalt Ferrites from Zingiber officinale and Elettaria cardamom Seed Extracts Using Biogenic Route. MATERIALS 2022; 15:ma15134374. [PMID: 35806499 PMCID: PMC9267341 DOI: 10.3390/ma15134374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
Biogenic routes for the synthesis of nanoparticles are environmentally friendly, nontoxic, biocompatible, and cost-effective compared to traditional synthesis methods. In this study, cobalt ferrite was synthesized using Zingiber officinale and Elettaria cardamom Seed extracts. Effect of copper contents (x = 0.0, 0.3, 0.6 and 0.9) on the plant extracted Cux(Co1−xFe2O4) was investigated by XRD, SEM, EDX, UV-Vis., PL, FE-SEM, FTIR and photocatalytic activity. XRD results revealed that nanoparticles exhibit a cubical spinel structure with an average diameter of 7–45 nm, calculated by the Debye Scherer formula. The value of the lattice parameter decreased from 8.36 Å to 8.08 Å with substitution of copper, which can be attributed to mismatch of ionic radii of Cu2+ (0.73 Å) and Co2+ (0.74 Å) ions. SEM analysis showed that nanoparticles exhibit a spherical shape (~13 nm diameter) for undoped samples and low Cu concentration, while they changed to a hexagonal structure at higher Cu concentration (x = 0.9) with a diameter ~46 nm and a decreased degree of agglomeration. FE-SEM further confirmed the nanoparticles’ size and shape. EDX analysis confirmed the presence of cobalt, iron, and oxygen without contamination. The optical absorption spectra of UV-vis and PL showed red-shift, which can be accredited to larger crystalline sizes of nanoparticles. FTIR spectra showed two main bands at 410 and 605 cm−1, indicating the presence of intrinsic vibrations of the octahedral and tetrahedral complexes, respectively. The photocatalytic activity of Co0.4Cu0.6 Fe2O4 nanoparticles was investigated using methylene blue (MB) and methyl orange (MO) dyes under visible light irradiation. The degradation rate (93.39% and 83.15%), regression correlation coefficient (0.9868 and 0.9737) and rate constant (0.04286 and 0.03203 rate·min−1) were calculated for MB and MO, respectively. Mechanisms for the formation and photocatalytic activity of Cu-substituted plant-extracted cobalt ferrite were discussed. The Co0.4Cu0.6 Fe2O4 nanoferrite was found to be an efficient photocatalyst, and can be exploited for wastewater treatment applications for MB/MO elimination.
Collapse
|
6
|
Nikmanesh H, Jaberolansar E, Kameli P, Varzaneh AG. Effect of praseodymium in cation distribution, and temperature-dependent magnetic response of cobalt spinel ferrite nanoparticles. NANOTECHNOLOGY 2022; 33:275709. [PMID: 35299157 DOI: 10.1088/1361-6528/ac5ee4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
This work reports cation distribution, magnetic, structural, and morphological studies of rare-earth Pr doped cobalt ferrite nanoparticles CoFe2-xPrxO4(x= 0, 0.02, 0.04, 0.06 at%) fabricated by sol-gel auto-combustion method. X-ray diffraction analysis, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and Fourier-transform infrared (FTIR) microscopy were utilized to study the structural and morphological characteristics of the prepared samples. Rietveld refinement by the Material Analyses Using Diffraction (MAUD) software showed the formation of mono-phase cubic spinel structure with Fd-3m space group; however, there was a trace of impure PrFeO3phase for the sample CoFe1.96Pr0.04O4(x= 0.06). Cation distribution was inferred from the XRD patterns using MAUD program. FESEM analysis revealed the spherical-shaped particles with dimensions close to the data extracted from XRD analysis and HRTEM images confirmed it. FTIR measurements revealed the presence of two prominent stretching vibrational modes confirming the successful formation of ferrite spinel structure. Magnetic properties of the nanoparticles were measured at two different temperatures 300 K and 10 K. For the low temperature of 10 K a high sensitive measurement method as Superconducting Quantum Interference Device (SQUID) magnetometry was used and Vibrating Sample Magnetometer (VSM) recorded the magnetic data at 300 K. Comparison of the magnetic results exhibited a significant enhancement with temperature drop due to the reduction in thermal fluctuations. Paramagnetic nature of rare-earth ions may be the main reason forMSdecrement from 76 emu g-1(x= 0.0) to 60 emu g-1(x= 0.02) at 300 K. At 10 K, the estimated cation distribution played a vital role in justification of obtained magnetic results. All the obtained data showed that the synthesized magnetic nanoparticles can be implemented in permanent magnet industry and information storage fields, especially when it comes to lower temperatures.
Collapse
Affiliation(s)
| | - Elnaz Jaberolansar
- Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Parviz Kameli
- Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali Ghotbi Varzaneh
- Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
- BCMaterials & University of Basque Country, Sarriena s/n, Leioa E-48940, Spain
| |
Collapse
|
7
|
Alguacil FJ, López FA. Organic Dyes versus Adsorption Processing. Molecules 2021; 26:5440. [PMID: 34576914 PMCID: PMC8469008 DOI: 10.3390/molecules26185440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Even in the first quarter of the XXI century, the presence of organic dyes in wastewaters was a normal occurrence in a series of countries. As these compounds are toxic, their removal from these waters is a necessity. Among the separation technologies, adsorption processing appeared as one of the most widely used to reach this goal. The present work reviewed the most recent approaches (first half of the 2021 year) regarding the use of a variety of adsorbents in the removal of a variety of organic dyes of different natures.
Collapse
Affiliation(s)
| | - Félix A. López
- National Center for Metallurgical Researcher (CENIM), Spanish National Research Council (CSIC), Avda. Gregorio del Amo 8, 28040 Madrid, Spain;
| |
Collapse
|
8
|
Hua J, Cheng Z, Chen Z, Dong H, Li P, Wang J. Tuning the microstructural and magnetic properties of CoFe 2O 4/SiO 2 nanocomposites by Cu 2+ doping. RSC Adv 2021; 11:26336-26343. [PMID: 35479453 PMCID: PMC9037360 DOI: 10.1039/d1ra04763a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/26/2021] [Indexed: 01/12/2023] Open
Abstract
Co–Cu ferrite is a promising functional material in many practical applications, and its physical properties can be tailored by changing its composition. In this work, Co1−xCuxFe2O4 (0 ≤ x ≤ 0.3) nanoparticles (NPs) embedded in a SiO2 matrix were prepared by a sol–gel method. The effect of a small Cu2+ doping content on their microstructure and magnetic properties was studied using XRD, TEM, Mössbauer spectroscopy, and VSM. It was found that single cubic Co1−xCuxFe2O4 ferrite was formed in amorphous SiO2 matrix. The average crystallite size of Co1−xCuxFe2O4 increased from 18 to 36 nm as Cu2+ doping content x increased from 0 to 0.3. Mössbauer spectroscopy indicated that the occupancy of Cu2+ ions at the octahedral B sites led to a slight deformation of octahedral symmetry, and Cu2+doping resulted in cation migration between octahedral A and tetrahedral B sites. With Cu2+ content increasing, the saturation magnetization (Ms) first increased, then tended to decrease, while the coercivity (Hc) decreased continuously, which was associated with the cation migration. The results suggest that the Cu2+ doping content in Co1−xCuxFe2O4 NPs plays an important role in its magnetic properties. The Cu2+ doping content in Co1−xCuxFe2O4/SiO2 plays an important role in tuning hyperfine interaction and magnetic properties.![]()
Collapse
Affiliation(s)
- Jie Hua
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
- Jilin Normal University
- Siping 136000
- China
- College of Information Technology
| | - Zeyuan Cheng
- College of Information Technology
- Jilin Normal University
- Siping 136000
- China
| | - Zihang Chen
- College of Information Technology
- Jilin Normal University
- Siping 136000
- China
| | - He Dong
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
- Jilin Normal University
- Siping 136000
- China
- College of Information Technology
| | - Peiding Li
- College of Information Technology
- Jilin Normal University
- Siping 136000
- China
| | - Jin Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
- Jilin Normal University
- Siping 136000
- China
- College of Information Technology
| |
Collapse
|