1
|
Abrahams D, Baker PGL. 3-Methyl Thiophene-Modified Boron-Doped Diamond (BDD) Electrodes as Efficient Catalysts for Phenol Detection-A Case Study for the Detection of Gallic Acid in Three Specific Tea Types. Foods 2024; 13:2447. [PMID: 39123638 PMCID: PMC11311794 DOI: 10.3390/foods13152447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Polymer modification has been established as a cost-effective, simple, in situ method for overcoming some of the inherent disadvantages of boron-doped diamond (BDD) electrodes, and its application has been extended to reliable, low-cost environmental monitoring solutions. The present review focuses on modifying BDD electrodes with semi-conductive polymers acting as redox mediators. This article reports on the development of a 3-methyl thiophene-modified boron-doped diamond (BDD/P3MT) sensor for the electrochemical determination of total phenolic compounds (TPCs) in tea samples, using gallic acid (GA) as a marker. GA is a significant polyphenol with various biological activities, making its quantification crucial. Thus, a simple, fast, and sensitive GA sensor was fabricated using the electroanalytical square wave voltammetry (SWV) technique. The sensor utilizes a semi-conductive polymer, 3-methyl thiophene, as a redox mediator to enhance BDD's sensitivity and selectivity. Electrochemical synthesis was used for polymer deposition, allowing for greater purity and avoiding solubility problems. The BDD/P3MT sensor exhibits good electrochemical properties, including rapid charge transfer and a large electrochemical area, enabling GA detection with a limit of detection of 11 mg/L. The sensor's response was correlated with TPCs measured by the Folin-Ciocalteu method. Square wave voltammetry (SWV) showed a good linear relationship between peak currents and GA concentrations in a wide linear range of 3-71 mg/L under optimal conditions. The BDD/P3MT sensor accurately measured TPCs in green tea, rooibos tea, and black tea samples, with green tea exhibiting the highest TPC levels. The results demonstrate the potential of the modified BDD electrode for the rapid and accurate detection of phenolic compounds in tea, with implications for quality control and antioxidant activity assessments. The prolific publications of the past decade have established BDD electrodes as robust BDD sensors for quantifying polyphenols. Fruits, vegetables, nuts, plant-derived beverages such as tea and wine, traditional Eastern remedies and various herbal nutritional supplements contain phenolic chemicals. The safety concerns of contaminated food intake are significant health concerns worldwide, as there exists a critical nexus between food safety, nutrition, and food security. It has been well established that green tea polyphenol consumption promotes positive health effects. Despite their potential benefits, consuming high amounts of these polyphenols has sparked debate due to concerns over potential negative consequences.
Collapse
Affiliation(s)
- Dhielnawaaz Abrahams
- SensorLab Research Group, Chemistry Department, University of The Western Cape, P.O. Box X17, Cape Town 7535, South Africa;
| | | |
Collapse
|
2
|
Şentürk Z. A Journey from the Drops of Mercury to the Mysterious Shores of the Brain: The 100-Year Adventure of Voltammetry. Crit Rev Anal Chem 2024; 54:1342-1353. [PMID: 35994268 DOI: 10.1080/10408347.2022.2113760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Voltammetry, which is at the core of electroanalytical chemistry, is an analytical method that investigates and evaluates the current-potential relationship obtained at a given working electrode. If it is used dropping mercury as working electrode, the method is called as polarography. The current year 2022 marks the 100th anniversary of the discovery of polarography by Czech Jaroslav Heyrovský. He received the Nobel Prize in Chemistry in 1959 for this discovery and his contribution to the scientific world. A hundred years, within the endless existence of the universe is maybe nothing. A hundred years, in the history of mankind is a line, maybe a short paragraph. But, in science, a hundred years can lead to very significant advances in a field and often to the birth and establishment of an entirely new scientific discipline. Indeed, in the last hundred years, the design and use of new electrochemical devices, depending on the progress in microelectronics and computer technologies, has almost revolutionized voltammetry. Besides these developments, due to the fact that the redox (oxidation/reduction) process is very basic for living organisms; the voltammetry, especially with the beginning of the 21st century, has started to be used as a very powerful tool in neuroscience to solve the mystery of the brain (the basic problems of biomolecules with physiological and genetic importance in brain tissue). This review article is an overview of the 100-year history and fascinating development of voltammetry from Heyrovský to the present.
Collapse
Affiliation(s)
- Zühre Şentürk
- Faculty of Science, Department of Analytical Chemistry, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
3
|
Talay Pınar P, Uzun G, Şentürk Z. First electrochemical investigation of new generation antineoplastic agent ceritinib at a boron-doped diamond electrode based on the pre-enrichment effect of anionic surfactant. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
4
|
McCormick WJ, Robertson PK, Skillen N, McCrudden D. The first electrochemical evaluation and voltammetric detection of the insecticide emamectin benzoate using an unmodified boron-doped diamond electrode. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
5
|
Zhang C, Yang X, Dai J, Liu W, Yang H, Bai Z. Efficient extraction of phenol from wastewater by ionic micro-emulsion method: Anionic and cationic. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Facile hydrothermal synthesis of manganese sulfide nanoelectrocatalyst for high sensitive detection of Bisphenol A in food and eco-samples. Food Chem 2022; 393:133316. [DOI: 10.1016/j.foodchem.2022.133316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 04/29/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022]
|
7
|
Dushna O, Dubenska L, Vojs M, Marton M, Patsay I, Ivakh S, Plotycya S. Highly Sensitive Determination of Atropine in Pharmaceuticals, Biological Fluids and Beverage on Planar Electrochemical Cell with Working Boron-Doped Diamond Electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Jamilan MA, Abdullah J, Alang Ahmad SA, Md Noh MF. Enhanced electrochemical detection of iodide at a reduced graphene oxide-modified carbon electrode in iodized salts. Food Chem 2022; 393:133382. [PMID: 35667176 DOI: 10.1016/j.foodchem.2022.133382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/19/2022]
Abstract
In this study, enhancement of electrochemical performance of electrochemically reduced graphene oxide (ERGO) on a screen-printed carbon electrode (SPCE) (ERGO/SPCE) coupled with ion-pairing (cetyltrimethylammonium bromide, CTAB) for the determination of iodide in table salt has been described. The electrode modification of ERGO/SPCE was conducted using cyclic voltammetric (CV) scanning in the potential range of 1.3-0.4 V for 50 cycles after the drop-casting of graphene oxide (GO) suspension on the SPCE. It was found that the electro-active surface area of ERGO/SPCE was increased by 1.5-fold compared to the bare SPCE. ERGO/SPCE sensor displays linearity towards iodide in the concentration range from 0.020 to 1.0 mg/L (sensitivity = 5.40 µA(mg/L)-1, R2 = 0.9906) with the limit of detection (LOD) and limit of quantitation (LOQ) of 0.070 mg/L and 0.21 mg/L, respectively. The comparison between polarography and ERGO/SPCE sensor was in good agreement.
Collapse
Affiliation(s)
- Mohd Azerulazree Jamilan
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No. 1, Jalan Setia Murni U13/52, Setia Alam, 40170 Shah Alam, Selangor D.E., Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia; Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia.
| | - Shahrul Ainliah Alang Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia; Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
| | - Mohd Fairulnizal Md Noh
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No. 1, Jalan Setia Murni U13/52, Setia Alam, 40170 Shah Alam, Selangor D.E., Malaysia
| |
Collapse
|
9
|
Shojaeimehr T, Schwarze M, Lima MT, Schomäcker R. Correlation of performance data of silica particle flotations and foaming properties of cationic and nonionic surfactants for the development of selection criteria for flotation auxiliaries. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Amiri M, Akbari Javar H, Mahmoudi-Moghaddam H, Salavati-Niasari M. Green synthesis of perovskite-type nanocomposite using Crataegus for modification of bisphenol a sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Özok H, Allahverdiyeva S, Yardım Y, Şentürk Z. First report for the electrooxidation of antifungal anidulafungin: Application to its voltammetric determination in parenteral lyophilized formulation using a boron‐doped diamond electrode in the presence of anionic surfactant. ELECTROANAL 2022. [DOI: 10.1002/elan.202100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Zühre Şentürk
- Yüzüncü Yıl University Faculty of Science&Letters TURKEY
| |
Collapse
|
12
|
Nair J.S A, S S, Sandhya KY. Picomolar level electrochemical detection of hydroquinone, catechol and resorcinol simultaneously using a MoS 2 nano-flower decorated graphene. Analyst 2022; 147:2966-2979. [DOI: 10.1039/d2an00531j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Graphene-Molybdenum disulphide nanocomposite was developed for the simultaneous electrochemical detection of dihydroxy benzene isomers attributed to the structural aspects.
Collapse
Affiliation(s)
- Arya Nair J.S
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiyamala, Thiruvananthapuram 695-547, Kerala, India
| | - Saisree. S
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiyamala, Thiruvananthapuram 695-547, Kerala, India
| | - K. Y. Sandhya
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiyamala, Thiruvananthapuram 695-547, Kerala, India
| |
Collapse
|
13
|
Synthesis, Characterization and Adsorption of Bisphenol A Using Novel Hybrid Materiel Produced from PANI Matrix Reinforced by Kieselguhr. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02151-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Unal DN, Yıldırım S, Kurbanoglu S, Uslu B. Current trends and roles of surfactants for chromatographic and electrochemical sensing. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Allahverdiyeva S, Yunusoğlu O, Yardım Y, Şentürk Z. First electrochemical evaluation of favipiravir used as an antiviral option in the treatment of COVID-19: A study of its enhanced voltammetric determination in cationic surfactant media using a boron-doped diamond electrode. Anal Chim Acta 2021; 1159:338418. [PMID: 33867032 PMCID: PMC7971419 DOI: 10.1016/j.aca.2021.338418] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/20/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022]
Abstract
Favipiravir, a promising antiviral agent, is undergoing clinical trials for the potential treatment of the novel coronavirus disease 2019 (COVID-19). This is the first report for the electrochemical activity of favipiravir and its electroanalytical sensing. For this purpose, the effect of cationic surfactant, CTAB was demonstrated on the enhanced accumulation of favipiravir at the surface of cathodically pretreated boron-doped diamond (CPT-BDD) electrode. At first, the electrochemical properties of favipiravir were investigated in the surfactant-free solutions by the means of cyclic voltammetry. The compound presented a single oxidation step which is irreversible and adsorption controlled. A systematic study of various operational conditions, such as electrode pretreatment, pH of the supporting electrolyte, concentration of CTAB, accumulation variables, and instrumental parameters on the adsorptive stripping response, was examined using square-wave voltammetry. An oxidation signal at around +1.21 V in Britton-Robinson buffer at pH 8.0 containing 6 × 10-4 M CTAB allowed to the adsorptive stripping voltammetric determination of favipiravir (after 60 s accumulation step at open-circuit condition). The process could be used in the concentration range with two linear segments of 0.01-0.1 μg mL-1 (6.4 × 10-8-6.4 × 10-7 M) and 0.1-20.0 μg mL-1 (6.4 × 10-7-1.3 × 10-4 M). The limit of detection values were found to be 0.0028 μg mL-1 (1.8 × 10-8 M), and 0.023 μg mL-1 (1.5 × 10-7 M) for the first and second segments of calibration graph, respectively. The feasibility of developed methodology was tested to the analysis of the commercial tablet formulations and model human urine samples.
Collapse
Affiliation(s)
- Shabnam Allahverdiyeva
- Van Yuzuncu Yil University, Faculty of Science, Department of Biochemistry, 65080, Van, Turkey
| | - Oruc Yunusoğlu
- Van Yuzuncu Yil University, Faculty of Medicine, Department of Pharmacology, 65080, Van, Turkey
| | - Yavuz Yardım
- Van Yuzuncu Yil University, Faculty of Pharmacy, Department of Analytical Chemistry, 65080, Van, Turkey,Corresponding author
| | - Zühre Şentürk
- Van Yuzuncu Yil University, Faculty of Science, Department of Analytical Chemistry, 65080, Van, Turkey,Corresponding author
| |
Collapse
|