1
|
Ullah M, Arshad M, Wei CR, Sanghvi G, Ballal S, Kalia R, Tirth V, Algahtani A, Zhengxin L. Rational designing of ZIF-67-derived Co 3O 4 nanocomposite with hierarchical porous structure and extensive peroxidase mimetic activities for highly sensitive colorimetric detection of nitrite in drinking water. Mikrochim Acta 2025; 192:61. [PMID: 39779597 DOI: 10.1007/s00604-024-06904-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025]
Abstract
A simple, fast, and cost-effective colorimetric nitrite (NO2-) sensor based on ZIF-67-derived Co3O4 nanocomposite (ZCo-2 NC) structure has been developed. The prepared colorimetric sensor (ZCo-2 NC) was employed to sensitively detect NO2- in drinking water system by the exhibition of promising peroxidase-mimicking nanozyme-like features. The sensor manifest well-determined sensing response with excellent linear and wide range of NO2- sensitivity (0.001-0.810 μM). The lower detection-limit (LOD) and lower quantification-limit (LOQ) were 0.14 ± 0.05 nM and 0.72 ± 0.05 nM, respectively, which is far below the US-EPA limit (21.7 μM). Further, the sensor also provides strong selectivity response to NO2-, better reversibility (12 cycles), and commendable stability of 10 weeks. In addition, it also perceived astonishing practicality towards NO2- in real water samples. Thus, this study opens a new pathway for the sensitive detection of NO2- in drinking water for future endeavor.
Collapse
Affiliation(s)
- Mohib Ullah
- School of Material Science and Engineering, Henan University of Technology Zhengzhou, Henan, 450001, China.
| | - Madeeha Arshad
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Calvin R Wei
- Department of Research and Development, Shing Huei Group, Taipei, Taiwan
| | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Rishiv Kalia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Asir, Kingdom of Saudi Arabia
- Centre for Engineering and Technology Innovations, King Khalid University, Abha, 61421, Asir, Kingdom of Saudi Arabia
| | - Ali Algahtani
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Asir, Kingdom of Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, PO Box 9004, Abha, 61413, Asir, Kingdom of Saudi Arabia
| | - Li Zhengxin
- School of Material Science and Engineering, Henan University of Technology Zhengzhou, Henan, 450001, China.
| |
Collapse
|
2
|
Rafiq K, Sabir M, Abid MZ, Hussain E. Unveiling the scope and perspectives of MOF-derived materials for cutting-edge applications. NANOSCALE 2024; 16:16791-16837. [PMID: 39206569 DOI: 10.1039/d4nr02168a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Although synthesis and design of MOFs are crucial factors to the successful implementation of targeted applications, there is still lack of knowledge among researchers about the synthesis of MOFs and their derived composites for practical applications. For example, many researchers manipulate study results, and it has become quite difficult to quit this habit specifically among the young researchers Undoubtedly, MOFs have become an excellent class of compounds but there are many challenges associated with their improvement to attain diverse applications. It has been noted that MOF-derived materials have gained considerable interest owing to their unique chemical properties. These compounds have exhibited excellent potential in various sectors such as energy, catalysis, sensing and environmental applications. It is worth mentioning that most of the researchers rely on commercially available MOFs for use as precursor supports, but it is an unethical and wrong practice because it prevents the exploration of the hidden diversity of similar materials. The reported studies have significant gaps and flaws, they do not have enough details about the exact parameters used for the synthesis of MOFs and their derived materials. For example, many young researchers claim that MOF-based materials cannot be synthesized as per the reported instructions for large-scale implementation. In this regard, current article provides a comprehensive review of the most recent advancements in the design of MOF-derived materials. The methodologies and applications have been evaluated together with their advantages and drawbacks. Additionally, this review suggests important precautions and solutions to overcome the drawbacks associated with their preparation. Applications of MOF-derived materials in the fields of energy, catalysis, sensing and environment have been discussed. No doubt, these materials have become excellent class but there are still many challenges ahead to specify it for the targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Mamoona Sabir
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| |
Collapse
|
3
|
Nasri A, Jaleh B, Daneshnazar M, Varma RS. Sensing Properties of g-C 3N 4/Au Nanocomposite for Organic Vapor Detection. BIOSENSORS 2023; 13:315. [PMID: 36979527 PMCID: PMC10046684 DOI: 10.3390/bios13030315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Alleviating the increasingly critical environmental pollution problems entails the sensing of volatile organic compounds (VOCs) as a hazardous factor for human health wherein the development of gas sensor platforms offers an efficient strategy to detect such noxious gases. Nanomaterials, particularly carbon-based nanocomposites, are desired sensing compounds for gas detection owing to their unique properties, namely a facile and affordable synthesis process, high surface area, great selectivity, and possibility of working at room temperature. To achieve that objective, g-C3N4 (graphitic carbon nitride) was prepared from urea deploying simple heating. The ensuing porous nanosheets of g-C3N4 were utilized as a substrate for loading Au nanoparticles, which were synthesized by the laser ablation method. g-C3N4 presented a sensing sensitivity toward organic vapors, namely methanol, ethanol, and acetone vapor gases, which were significantly augmented in the presence of Au nanoparticles. Specifically, the as-prepared nanocomposite performed well with regard to the sensing of methanol vapor gas and offers a unique strategy and highly promising sensing compound for electronic and electrochemical applications.
Collapse
Affiliation(s)
- Atefeh Nasri
- Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan 65174, Iran
| | - Babak Jaleh
- Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan 65174, Iran
| | - Milad Daneshnazar
- Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan 65174, Iran
| | - Rajender S. Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentska 1402/2, 46117 Liberec, Czech Republic
| |
Collapse
|
4
|
Effect of Co3O4/TiO2 heterojunction photoanode with enhanced photocathodic protection on 304 stainless steel under visible light. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
5
|
Wang Z, Jin X, Yan L, Yang Y, Liu X. Recent research progress in CDs@MOFs composites: fabrication, property modulation, and application. Mikrochim Acta 2022; 190:28. [PMID: 36520192 DOI: 10.1007/s00604-022-05597-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Carbon dots (CDs) have exhibited a promising application prospect in many fields because of their good fluorescence properties, biocompatibility, low toxicity, and easy functionalization. In order to improve their photoelectricity and stability, metal-organic frameworks (MOFs) can be used as host materials to provide ideal carriers for CDs to realize the multifunctional composites of CDs and MOFs (CDs@MOFs). At present, CDs@MOFs composites have shown tremendous application potential because they have various advantages of both CDs and MOFs. In this review, the synthesis methods of CDs@MOFs composites are firstly introduced. Then, the influence of the synergy between CDs and MOFs on the regulation of their structures and optical properties is highlighted. Furthermore, the recent application researches of CDs@MOFs composites in fluorescent probes, solid-state lighting, and photoelectrocatalysis are generalized. Finally, the critical issues, challenges, and solutions on their structure and property regulation and application are put forward, and their commercialization direction is also prospected.
Collapse
Affiliation(s)
- Zhi Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xudong Jin
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Lingpeng Yan
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.,College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xuguang Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
6
|
He H, Liu J, Liu H, Pan Q, Zhang G. The development of high-performance room temperature NOX one-dimensional Na0.23TiO2/TiO2 compound gas sensor. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
El-Akaad S, Morozov R, Golovin M, Bol'shakov O, De Saeger S, Beloglazova N. A novel electrochemical sensor for the detection of fipronil and its toxic metabolite fipronil sulfone using TiO 2-polytriazine imide submicrostructured composite as an efficient electrocatalyst. Talanta 2022; 238:123025. [PMID: 34801916 DOI: 10.1016/j.talanta.2021.123025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/22/2021] [Accepted: 10/31/2021] [Indexed: 12/31/2022]
Abstract
For the first time, a simple and sensitive electrochemical sensor based on a screen printed electrode (SPE) modified with titanium dioxide (TiO2) and polytriazine imide submicrostructured composite (TiO2-PTI) has been developed for the simultaneous detection of fipronil (FIP) and its toxic metabolite fipronil sulfone (FIP-S). The submicrostructured composite material based on TiO2 and PTI was obtained by simple hydrothermal treatment of the Ti peroxocomplexes in the presence of pristine. This carbon nitride allotrope has better crystallinity and conductivity than its graphitic analog. It was found that the TiO2-PTI submicrostructured composite enhanced the electrochemical sensing of the SPE electrode towards FIP and its metabolite FIP-S in 0.1 M Britton-Robinson buffer (pH 10) at the oxidation potentials of 0.82 V and 0.94 V, respectively. In addition, it showed good stability and reproducibility for the determination of both analytes. Under optimal conditions, the peak currents by square wave voltammetry were found to vary linearly with FIP and FIP-S concentrations in the range from 0.01 to 10 μM and from 10 to 50 μM, with a detection limit of 8.42 nM, 3.6 μg/kg for FIP and 9.72 nM, 4.04 μg/kg for FIP-S. This sensor was successfully used to detect FIP and FIP-S in eggs and water samples with good recoveries of 90%-106.6%.
Collapse
Affiliation(s)
- Suzan El-Akaad
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Department of Pharmaceutical Chemistry, Egyptian Drug Authority (EDA), Giza, Egypt.
| | - Roman Morozov
- Nanotechnology Education and Research Center, South Ural State University, Chelyabinsk, Russia
| | - Mikhail Golovin
- Nanotechnology Education and Research Center, South Ural State University, Chelyabinsk, Russia
| | - Oleg Bol'shakov
- Nanotechnology Education and Research Center, South Ural State University, Chelyabinsk, Russia; N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Natalia Beloglazova
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Nanotechnology Education and Research Center, South Ural State University, Chelyabinsk, Russia
| |
Collapse
|
8
|
Cai Z, Chen J, Xing S, Zheng D, Guo L. Highly fluorescent g-C 3N 4 nanobelts derived from bulk g-C 3N 4 for NO 2 gas sensing. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126195. [PMID: 34492959 DOI: 10.1016/j.jhazmat.2021.126195] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/30/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
The fluorescent emission wavelengths of nanostructures derived from bulk graphitic carbon nitride were commonly lower than those of their bulk due to the quantum confinement effect, which are disadvantageous for bioimaging and sensing applications. Herein, a new strategy to engineer graphitic carbon nitride nanomaterials with tunable fluorescent wavelength and intensity was proposed via thermal treatment of bulk graphitic carbon nitride at high temperature and then hydrolysis in alkali solution. Highly fluorescent g-C3N4 nanobelts with emission peak at 494 nm, 19 nm higher than that of bulk graphitic carbon nitride and 23.6% quantum yield were successfully obtained by controlling the heating temperature at 750 °C for 2 h and the hydrolysis in 4 mol L-1 NaOH solution for 8 h. Finally, a home-made portable gas sensor for reversibly sensing of toxic NO2 gas at room temperature was designed by utilizing graphitic carbon nitride nanobelts as the fluorescent nanoprobe, which can overcome the disadvantages of high operation temperature or the interference of humidity resulting from the common chemiresistive sensors.
Collapse
Affiliation(s)
- Zhuang Cai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jingru Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Shanshan Xing
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Daiwei Zheng
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Liangqia Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|